Operácie

Zaciatok

Zo stránky SensorWiki

História

Predhistória

Počítanie a počítače sú úzko prepojené s číslami a číselnými sústavami. Donedávna sa v Európe používali rímske číslice. Napr. číselná sústava používaná v Babylone (1900 to 180


Zobrazenie informácií v počítači

Donedávna sa v Európe používali rímske číslice. Napr. číselná sústava používaná v Babylone (1900 to 180

Číselné sústavy

Delíme ich na :

  • polyadické (pozičné) číselné sústavy PČS, ktoré môžeme rozvinúť do mocninového radu
  • nepolyadické (nepozičné)číselné sústavy NČS. Napr.: rímska číselná sústava (IX, X, XIV)

Zobrazenie informácií v počítači

Počítanie a počítače sú úzko prepojené s číslami a číselnými sústavami. V bežnom živote používame dekadické čísla (číslice 0,1,2,2,3,4,5,6,7,8,9)v pozičnej číselnej sústave. Napr.: Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1234 = 1.10^3 + 2.10^2 + 3.10^1 + 4.10^0 } Moderné počítače vnútorne pracujú s binárnymi číslami=dvojkovými(číslice 0 a 1). Napr.:

Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0_{2} = 0.2^0 = 0_{10} } ,

Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1_{2} = 1.2^0 = 1_{10} } ,

Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 10_{2} = 1.2^1 + 0.2^0 = 2_{10} } ,

Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 11_{2} = 1.2^1 + 1.2^0 = 3_{10} } ,

Vlastnosti PČS:

Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_z = \pm a_{n-1},a_{n-2}...a_{1}a_{0},a_{-1}a_{-2}...a_{-k} z^i}

  1. Maximálne zobraziteľné číslo

Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_{max} = z^{n} -z^{-k}} pre celé čísla: Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_{max} = z^{n} -1} pre desatinné čísla:

  1. Minimálne číslo v absolútnej hodnote rôzne od nuly: Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_{min} = z^{-k}}
  2. Krok diskrétnosti: Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h = z^{-k}}
  3. Kapacita číselnej sústavy pre m-rádové čísla:

Pr.: z = 10, m = 3, K = 1000 možných čísiel (0..999)

  1. Počet zobrazujúcich rádov:Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m = log_{z}(K+1)} .
  2. Desetinná čiarka, bodka si vo všetkých číselných sústavách odpovedá. Samostatne môžeme prevádzať obe časti(celu i zlomkovú).

Napr.:Napr. dekadické číslo Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2345,37_{10}} môžeme rozpísať do tvaru

Pozičné číselné sústavy (PČS)

Hodnotu celého nezáporného čísla vyjadríme v tvare polynómu:

Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_z = \sum_{i=0}^{n-1} a_i z^i} ,

kde

  • z je základ pozičnej sústavy Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z \geq 2 \qquad (2, 8, 10, 16)}
  • a_i číslice ak Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} je prirodzené číslo, potom Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_{i}= 0,1, ..., z-1} poloha číslice určuje rád číslice, ktorý je definovaný váhou , Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n-1 } jerád sústavy.

Ak potrebujeme zapisáť racionálne číslo (väčšina) použijeme záporné mocniny až do rádu Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k}

Bežne používame skrátený zápis racionálneho čísla Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_z = \pm a_{n-1},a_{n- 2}...a_{1}a_{0},a_{-1}a_{-2}...a_{-k} z^i}

Poznámka: Rozšírenie na záporné čísla použitím znamienka mínus (-) pred číslom a používanie desatinnej čiarky je vhodné pre ľudí. V žiadnom prípade to nie je vhodný zápis pre počítač.

Pre:

Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z=2} získame dvojkovú - binárnu číselnú sústavu (0,1)

získame osmičkovú - oktálovú číselnú sústavu (0,1,2,...,7)

Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z=10} získame desiatkovú - dekadickú číselnú sústavu (0,1,2,...,9)

Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z=16} získame šesťnástkovú - hexadecimálnu číselnú sústavu (0,1,2,...,9,A,B,C,D,E,F). Slovo hexadecimálny pochádza z gréckeho (hexi - šesť) a latinského (decem - desať).


Vlož tabuľku.