Zaciatok
Zo stránky SensorWiki
Základné stavebné prvky počítača
Počítač na spodnej úrovni pracuje ako elektronické zariadenie vytvorené z tranzistorov.
Základný režim činnosti tranzistora je: Spínací režim. Tento môžeme z fyzikálnej podstaty popísať ako: Tranzistor prúd vedie, resp. nevedie. Jednotlivým stavom tranzistora môžeme priradiť logické úrovne odpovedajúce dvojkovej číslici (bit), označené ako log.0 a log.1.
Tranzistor
Je všeobecné známe, že základom integrovaných obvodov je tranzistor. Podľa typu nosiča náboja ich delíme na:
- bipolárne (dva typy nosiča - elektróny a diery) a
 - unipolárne (jeden typ nosiča).
 
Unipolárna technológia výroby: Sú to vlastne elektrickým poľom riadené tranzistory (FET – Field Effect Transistor).
Historicky najstaršou technológiou je PMOS (Metal Oxid Semiconductor), ktorá používa unipolárny tranzistor s kanálom P. Vzhľadom na nízku rýchlosť a zlú zlučiteľnosť s TTL obvodmi sa nahradila technológiou NMOS (MOS tranzistor s kanálom N). Dosahuje vyššie rýchlosti, pretože elektróny sa pohybujú rýchlejšie ako diery. Výhodou je aj dobrá zlučiteľnosť s obvodmi TTL. Hradlo typu NMOS v invertujúcom zapojení používa ako záťaž spínacieho prvku rezistor. Hradlo NMOS zapojené ako invertor používa rezistor vo funkcii záťaže spínacieho obvodu.
xxxxxxxxxxx Výhody:
- minimalizované straty
 - zlučiteľné s TTL
 
xxxxxxxxxxx
Technológie CMOS (Complemntary MOS)
Dnes sa presadzujú technológie, v ktorých je rezistor nahradený „aktívnou“ záťažou - tranzistorom PMOS. Výhodou tejto technológie je eliminovanie stratového výkonu v statickom režime, kedy je jeden tranzistor vždy zatvorený. Tento obrázok je základom technológie CMOS (Complemntary Metal – Oxid Semiconductor). V tejto technológii odpovedá napätie napätie až a napätie Syntaktická analýza (parsing) neúspešná (syntaktická chyba): {\displaystyle \ 0,7V_{DD} až } . Pre napájacie napätie , odpovedajúce napájaniu TTL obvodov, sú rozsahy nasledovné: až a až .
Okrem sa používa aj a
V ďalšom budeme uvažovať N a P MOS tranzistory ako jednoduché spínače. Napájacie napätie je unipolárne: .
N-typ tranzistora má vývod S pripojený na ZEM. Aby bol tranzistor vodivý – ON musí byť napätie voči bodu S kladné. musí byť väčšie ako je minimálna prahová hodnota. Napr.: . Prechod DS je potom vodivý. Ak je napätie , potom je tranzistor nevodivý – v stave OFF.
P-typ tranzistora má bod S pripojený na . Ak má byť tranzistor v stave ON, musí byť napätie voči bodu S záporné. musí byť menšie ako je minimálna prahová hodnota. Napr.:. Ak je napätie , potom je tranzistor nevodivý – v stave OFF.
Logické úrovne – “ napätie“
Zapojenie výstupov IC
TTL obvody: logické úrovne
Základné stavebné prvky počítačov sú vytvorené :
Invertor:
NAND:
Spínač:
Trojstavový budič:
D-klopný obvod:
Bit pamäte RAM:
Bit vstupného portu:
Bit výstupného portu:
Značky, rôzne normy:
Číselné sústavy
Delíme ich na :
- polyadické (pozičné) číselné sústavy PČS, ktoré môžeme rozvinúť do mocninového radu
 - nepolyadické (nepozičné)číselné sústavy NČS. Napr.: rímska číselná sústava (IX, X, XIV)
 
Pozičné číselné sústavy (PČS)
Hodnotu celého nezáporného čísla vyjadríme v tvare polynómu:
,
kde
- je základ pozičnej sústavy,
 
-  číslice 
- ak je prirodzené číslo, potom
 - Poloha číslice určuje rád číslice, ktorý je definovaný váhou
 
 - je rád sústavy.
 
Ak potrebujeme zapisáť racionálne číslo (väčšina) použijeme záporné mocniny až do rádu
Bežne používame skrátený zápis racionálneho čísla
Poznámka: Rozšírenie na záporné čísla použitím znamienka mínus (-) pred číslom a používanie desatinnej čiarky je vhodné pre ľudí. V žiadnom prípade to nie je vhodný zápis pre počítač.
Pre:
získame dvojkovú - binárnu číselnú sústavu (0, 1)
získame osmičkovú - oktálovú číselnú sústavu (0,1,2,...,7)
získame desiatkovú - dekadickú číselnú sústavu (0,1,2,...,9)
získame šesťnástkovú - hexadecimálnu číselnú sústavu (0,1,2,...,9,A,B,C,D,E,F). Slovo hexadecimálny pochádza z gréckeho (hexi - šesť) a latinského (decem - desať).

n
Vlastnosti PČS:
- Maximálne zobraziteľné číslo:
 
- pre celé čísla:
 - pre desatinné čísla:
 
- Minimálne číslo v absolútnej hodnote rôzne od nuly:
 - Krok diskrétnosti:
 - Kapacita číselnej sústavy pre m-rádové čísla: Pr.: z = 10, m = 3, K = 1000 možných čísiel (0..999)
 - Počet zobrazujúcich rádov:.
 - Desetinná čiarka, bodka si vo všetkých číselných sústavách odpovedá. Samostatne môžeme prevádzať obe časti(celu i zlomkovú).
 
Napríklad dekadické číslo môžeme rozpísať do tvaru
hodnoty číslic sú .
?? Zobrazenie informácií v počítači ??
Počítanie a počítače sú úzko prepojené s číslami a číselnými sústavami. V bežnom živote používame dekadické čísla (číslice 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) v pozičnej číselnej sústave. Napr.: Moderné počítače vnútorne pracujú s binárnymi číslami=dvojkovými(číslice 0 a 1). Napr.:
,
,
,
,
Pozičné číselné sústavy – prevody
Prevod z desiatovej sústavy do číselnej sústavy so základom :
Prevod sa vykonáva zvlášť:
- pre celočíselnú časť čísla a
 - zvlášť predesatinnú časť čísla
 
Prevod celočíselného dekadického čísla do sústavy so základom :
Metóda je založená na postupnom celočíselnom delení dekadického , číslom ,. Celočíselné delenie:
,
Kde: - delenec, - deliteľ , – podiel a - zvyšok, sú celé čísla.
.
Príklad: Prevod do 8-ovej sústavy:
Príklad: Prevod do 16-ovej sústavy:
Príklad: Prevod do binárnej sústay:
x Prevod z číselnej sústavy so základom do desiatkovej sústavy : Vychádza zo vzťahu pre hodnotu čísla vyjadreného v danom základe číselnej sústavy ( zápis hodnoty je formálne zhodný zo zápisom čísla v dekadickej sústave)
alebo
Pr. : Preveďme binárne číslo 1010111 do dekadickej sústavy
Prvý spôsob:
Druhý spôsob:
Pr.: Prevod čísla do dekadickej sústavy:
Prevod z číselnej sústavy so základom do číselnej sústavy so základom :
Pri prevode zo sústavy so základom do číselnej sústavy so základom sa všeobecne používa schéma
Výnimkou sú prevody medzi sústavami pri základe
Prevod z binárnej sústavy do oktálnej alebo hexadecimálnej sa vykoná tak, že sa binárne znaky rozdelia „odzadu“ na trojíc alebo štvoríc, a skupiny sa kódujú osobitne:
Prevod binárneho čísla  do osmičkovej (oktálnej) sústavy:
| rozdelíme na trojice binárnych číslic: | |
| vytvoríme kódy oktálnych číslic: | |
| zapíšeme výsledok: | 
Prevod binárneho čísla  do hexadecimálnej sústavy:
- rozdelíme na štvorice binárnych číslic:
 - vytvoríme kódy hexadecimálnych číslic:
 - zapíšeme výsledok:
 
Prevod desatinnej časti dekadického čísla do sústavy so základom :
Metóda je založená na postupnom násobení desatinnej časti dekadického číslom .
kde: a je celé číslo.
kde: je celé číslo a
kde: je celé číslo a , atď.
Príklady:
Pr.:1. Preveďme číslo do osmičkovej sústavy:
Pr.:2. Preveďme číslo do dvojkovej sústavy:
Pr.:3. Preveďme číslo  do dvojkovej sústavy:
Číslo sa nedá vyjadriť konečným počtom binárnych číslic !!
Nepozičné číselné sústavy:
V nepozičných číselných sústavách vždy neplatí: .
Rímska číselná sústava (najznámejšia nepolyadická sústava). 
Skladá sa zo 7 symbolov: I V X L C D M. 
I = 1, V = 5, X = 10, L = 50, C = 100, D = 500, M = 1000.
Zápis: Sprava doľava. Výnimka: Ak zapíšeme číslice I, X, C pred väčšiu číslicu, potom menšiu od väčšej odčítame.
Napr: MMXMIV = 1000 + 1000 + (1000 - 10) + (5 - 1) = 2994
Číslice V, L, D môžu byť zapísané len raz a číslice I, X, C najviac trikrát za sebou. M sa môže opakovať ľubovoľne krát.
Príklad: Číslo zobrazené v rímskej číselnej sústave je zapísané ako číslo CCXV, kde jednotlivé znaky odpovedajú hodnotám .
Predhistória
Počítanie a počítače sú úzko prepojené s číslami a číselnými sústavami. Donedávna sa v Európe používali rímske číslice. Napr. číselná sústava používaná v Babylone (1900 to 180
- 1969 - first computer networks
 - 1970 – UNIX
 - 1971 - First true microprocessor (Intel)
 - 1965 Objavená bola aj myš, ale začala sa používať až 1985.
 
Vlož tabuľku.























