Operácie

Zaciatok

Zo stránky SensorWiki

História

Predhistória

Počítanie a počítače sú úzko prepojené s číslami a číselnými sústavami. Donedávna sa v Európe používali rímske číslice. Napr. číselná sústava používaná v Babylone (1900 to 180


Zobrazenie informácií v počítači

Donedávna sa v Európe používali rímske číslice. Napr. číselná sústava používaná v Babylone (1900 to 180

Číselné sústavy

Zobrazenie informácií v počítači

Počítanie a počítače sú úzko prepojené s číslami a číselnými sústavami. V bežnom živote používame dekadické čísla (číslice 0,1,2,2,3,4,5,6,7,8,9)v pozičnej číselnej sústave. Napr.: Moderné počítače vnútorne pracujú s binárnymi číslami=dvojkovými(číslice 0 a 1). Napr.:

,

,

,

,

Hodnotu celého nezáporného čísla vyjadríme v tvare polynómu:, kde z je základ pozičnej sústavy číslice ak je prirodzené číslo, potom poloha číslice určuje rád číslice, ktorý je definovaný váhou , jerád sústavy. Ak potrebujeme zapisáť racionálne číslo (väčšina) použijeme záporné mocniny až do rádu

Bežne používame skrátený zápis racionálneho čísla

Pozn.: Rozšírenie na záporné čísla, použitím znamienka "-" pred číslom, a desatinnej čiarky, je vhodné pre ľudí. V žiadnom prípade to nie je vhodný zápis pre počítač. Pre: získame dvojkovú - binárnu číselnú sústavu (0,1) získame osmičkovú - oktálnú číselnú sústavu (0,1,2,...,7) získame desiatkovú - dekadickú číselnú sústavu (0,1,2,...,9) získame šesťnástkovú - hexadecimálnú číselnú sústavu (0,1,2,...,9,A,B,C,D,E,F). Slovo hexadecimálny pochádza z gréckeho (hexi - šesť) a latinského (decem - desať) získame dvojkovú - binárnu číselnú sústavu (0,1) Delíme ich na :

  • polyadické (pozičné) číselné sústavy PČS, ktoré môžeme rozvinúť do mocninového radu
  • nepolyadické (nepozičné)číselné sústavy NČS. Napr.: rímska číselná sústava (IX, X, XIV)

Pozičné číselné sústavy (PČS)

Donedávna sa v Európe používali rímske číslice. Napr. číselná sústava používaná v Babylone (1900 to 180