Zaciatok
Zo stránky SensorWiki
Históriaa
Predhistória
Počítanie a počítače sú úzko prepojené s číslami a číselnými sústavami. Donedávna sa v Európe používali rímske číslice. Napr. číselná sústava používaná v Babylone (1900 to 180
Zobrazenie informácií v počítači
Donedávna sa v Európe používali rímske číslice. Napr. číselná sústava používaná v Babylone (1900 to 180
Číselné sústavy
Zobrazenie informácií v počítači
Počítanie a počítače sú úzko prepojené s číslami a číselnými sústavami. V bežnom živote používame dekadické čísla (číslice 0,1,2,2,3,4,5,6,7,8,9)v pozičnej číselnej sústave. Napr.: Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1234 = 1.10^3 + 2.10^2 + 3.10^1 + 4.10^0 } Moderné počítače vnútorne pracujú s binárnymi číslami=dvojkovými(číslice 0 a 1). Napr.:
Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0_{2} = 0.2^0 = 0_{10} } ,
Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1_{2} = 1.2^0 = 1_{10} } ,
Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 10_{2} = 1.2^1 + 0.2^0 = 2_{10} } ,
Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 11_{2} = 1.2^1 + 1.2^0 = 3_{10} } ,
Hodnotu celého nezáporného čísla Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_z} vyjadríme v tvare polynómu:Syntaktická analýza (parsing) neúspešná (MathML s fallbackom na SVG alebo PNG (odporúčané pre moderné prehliadače a nástroje pre zjednodušenie prístupu): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Sem vložte vzorec}
Delíme ich na :
- polyadické (pozičné) číselné sústavy PČS, ktoré môžeme rozvinúť do mocninového radu
- nepolyadické (nepozičné)číselné sústavy NČS. Napr.: rímska číselná sústava (IX, X, XIV)
Pozičné číselné sústavy (PČS)
Donedávna sa v Európe používali rímske číslice. Napr. číselná sústava používaná v Babylone (1900 to 180