Robotics: Rozdiel medzi revíziami
Zo stránky SensorWiki
Vytvorená stránka „Helper page for the Peter Corke: Introduction to robotics MOOC. #week2 #matlab o=[-1.8833, 6.1427, 1.0000]; %Orientation vector a=[1.0000, -0.4925, 4.9085]; ...“ |
Bez shrnutí editace |
||
Riadok 1: | Riadok 1: | ||
Helper page for the Peter Corke: Introduction to robotics MOOC. | Helper page for the Peter Corke: Introduction to robotics MOOC. | ||
=== L3.10 2-axis representation === | |||
Check understanding: The rotation matrix | |||
0.9363 −0.2896 0.1987 | |||
0.3130 0.9447 −0.0978 | |||
−0.1593 0.1538 0.9752 | |||
is equivalent to the 2-vector representation: | |||
* A=(−1.8833,6.1427,1.0000),O=(1.0000,−0.4925,4.9085) | |||
* A=(1.0000,−0.4925,4.9085),O=(2.9914,1.0000,−0.5091) | |||
* A=(1.0000,−0.4925,4.9085),O=(−1.8833,6.1427,1.0000) | |||
* A=(−1.8833,6.1427,1.0000),O=(2.9914,1.0000,−0.5091) | |||
Solution: | |||
o=[-1.8833, 6.1427, 1.0000]; %Orientation vector | o=[-1.8833, 6.1427, 1.0000]; %Orientation vector |
Verzia z 09:09, 3. október 2016
Helper page for the Peter Corke: Introduction to robotics MOOC.
L3.10 2-axis representation
Check understanding: The rotation matrix
0.9363 −0.2896 0.1987 0.3130 0.9447 −0.0978 −0.1593 0.1538 0.9752
is equivalent to the 2-vector representation:
- A=(−1.8833,6.1427,1.0000),O=(1.0000,−0.4925,4.9085)
- A=(1.0000,−0.4925,4.9085),O=(2.9914,1.0000,−0.5091)
- A=(1.0000,−0.4925,4.9085),O=(−1.8833,6.1427,1.0000)
- A=(−1.8833,6.1427,1.0000),O=(2.9914,1.0000,−0.5091)
Solution:
o=[-1.8833, 6.1427, 1.0000]; %Orientation vector a=[1.0000, -0.4925, 4.9085]; %Approach vector R=oa2r(o,a) %To create rotation matrix R from o and a vectors R = 0.9363 -0.2896 0.1987 0.3130 0.9447 -0.0978 -0.1593 0.1538 0.9752 n=cross(o,a) %To calculate normal vector n n = 30.6439 10.2442 -5.2152 r=[n' o' a'] %To create rotation matrix r with columns of n, o, a vectors # Wrong, n, o and a are unit vectors: r=[unit(n') unit(o') unit(a')] %To create rotation matrix r with columns of n, o, a vectors tr2rpy(R) %To calculate roll, pitch and yaw angles from rotation matrix R tr2rpy(r) %To calculate roll, pitch and yaw angles from rotation matrix r
Can you please explain:
1. How can matrices R=oa2r(o,a) and r=[n' o' a'] proved to be equivalent? 2. Why is a difference appearing in the yaw angle calculated from matrix R and from matrix r?