Elektronická škrtiaca klapka
Zo stránky SensorWiki
Záverečný projekt predmetu MIPS / LS2024 - Peter Szovics
Zadanie
Zostrojte a naprogramujte ovladanie škrtiacej klapky pomocou plynového pedálu.
Literatúra:
Analýza a opis riešenia
Mojou témou semestrálnej práce je ovládanie škrtiacej klapky pomocou plynového pedálu. Zapojenie a vypracovanie projektu je inšpirované cvičením 8: (http://senzor.robotika.sk/sensorwiki/index.php/A/D_prevodn%C3%ADk).
Súčiastky a diely ktoré boli použité na zostrojenie projektu:
• elektronický plynový pedál (1K2 721 503 AJ)
• elektronická škrtiaca klapka (047 133 062)
• sacie potrubie (047 129 743 G)
• arduino r3 doska (Microchip ATmega328P)
• adaptér 230V/9V (ASSA107E-090100)
• napatovy stabilizator (7805)
• mosfet transistor (IRF540N)
• rezistory 1kΩ, 220Ω
• breadboard (MB-102 830/400)
• duPont káble M-M - 40x, 40 cm
Presný opis fungovania elektrického obvodu:
V akej pozícií je pedál toľko energie sa vysiela na pohon škrtiacej klapky, v našom prípade s aktuálnym zapojením sa klapka začne hýbať až po prekročení 40% zatlačenia pedálu, aby sme predišli tomuto neefektívnemu ovládaniu a chceliť docieliť identický pohyb klapky a pedálu tak som pre budúce vylepšovanie do projektu zakomponoval aj predprípravu (arduino výstup A3, A1 a A2) na spätnoväzobný regulátor aby klapka presne kopírovala polohu pedálu.
Na obrázku je vyobrazená schéma zapojenia elektronického plynového pedála pre Arduino. Popis jednotlivých častí:
1. Napájanie:
- Sieťový adaptér (230V/9V) je pripojený k stabilizátoru napätia 7805, ktorý redukuje napätie na 5V pre Arduino.
2. Ovládanie motora:
- Motor (škrtacia klapka) sú pripojené k Mosfet tranzistoru IRF540N, ktorý slúži ako spínač pre ovládanie motora. - Gate (G) tranzistora je riadený z pinu D6 Arduina cez rezistor R1 (1kΩ).
3. Snímanie polohy pedála:
- Elektronický plynový pedál má v sebe dva potenciometre pripojené k analógovým vstupom Arduina (A4). - Posuvné kontakty potenciometrov sú napájané 5V a zemou, poskytujúce variabilný výstupný signál podľa stlačenia pedála.
4. Ochranné prvky:
- Dióda D1 je chránená rezistorom R2. - Rezistor R1 je pridaný pre ochranu pinu D6 Arduina pred nadmerným prúdom.
Vizuálna reprezentácia PWM (Pulse width modulation), šírka impulzu sa mení podľa závislosti zatlačenia pedálu.
Algoritmus a program
Celý kód som použil z 8 cvičenia, kde sme sa mohli naučiť ovládať ledku pomocou PWM, kód je napísaný v jednom .c súbore – na spustenie treba 4 knižnice.
#include <avr/io.h>
#include "uart.h"
#define F_CPU 16000000UL
#define BAUDRATE 9600
#include <stdio.h>
FILE mystdout = FDEV_SETUP_STREAM(uart_putc, NULL, _FDEV_SETUP_WRITE);
int main(void)
{
adc_init();
hw_init();
uart_init();
stdout = &mystdout;
unsigned int measuredValue;
DDRD|=(1<<PD6);
TCNT0=0;
OCR0A=0;
TCCR0A|=(1<<COM0A1)|(1<<COM0B1)|(1<<WGM01)|(1<<WGM00);
TCCR0B|=(1<<CS02)|(1<<CS00);
while(1)
{
measuredValue = adc_read(4);
printf("hodnota: %04d \r",measuredValue);
OCR0A=measuredValue/4;
}
return(0);
}
#include <avr/io.h>
void adc_init(void);
unsigned int adc_read(char a_pin);
#include <stdio.h>
#include "adc.h"
void adc_init(void) {
ADMUX = (1 << REFS0); // reference voltage set to AVcc
ADCSRA = (1 << ADEN) | (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0); // enable ADC and set prescaler to 128
}
unsigned int adc_read(char a_pin) {
a_pin &= 0x07; // limit input to 0-7
ADMUX = (ADMUX & 0xF8) | a_pin; // select ADC channel with safety mask
ADCSRA |= (1 << ADSC); // start conversion
while (ADCSRA & (1 << ADSC)); // wait for conversion to complete
return ADC; // return the ADC value
}
/* ************************************************************************* */
/* FileName: uart.h */
/* ************************************************************************* */
#define LED PB5 // internal on-board LED
/* na testovanie su uz zadefinovane */
// bit_is_set(PINB, SW1)
// bit_is_clear(PINB, SW1)
/* na cakanie su preddefinovane slucky */
// loop_until_bit_is_set(PINB, SW1); // cakanie na uvolnenie tlacitka
// loop_until_bit_is_clear(PINB, SW1); // cakanie na stlacenie tlacitka
#define set_bit(ADDRESS,BIT) (ADDRESS |= (1<<BIT))
#define clear_bit(ADDRESS,BIT) (ADDRESS &= ~(1<<BIT))
#ifndef UART_H_
#define UART_H_
#include <stdio.h>
#define BAUD_PRESCALE (((F_CPU / (BAUDRATE * 16UL))) - 1) // vzor?ek z datasheetu
void hw_init( void );
void uart_init( void );
/* Following definition is compatible with STDIO.H, for more
* information see https://www.appelsiini.net/2011/simple-usart-with-avr-libc/
*/
int uart_putc( char c, FILE *stream );
void uart_puts( const char *s );
char uart_getc( void );
void delay(int delay);
#endif /* UART_H_ */
/* ************************************************************************* */
/* FileName: uart.c */
/* ************************************************************************* */
#include <avr/io.h>
#include <util/delay.h>
#include "uart.h"
void hw_init( void )
{
DDRB |= (1<<LED); // PORTB.5 kde je LED ma byt OUTPUT
/* sem si mozete dopisat svoje vlastne inicializacne prikazy */
}
void uart_init( void )
{
// for different BAUD rate change the project settings, or uncomment
// following two lines:
// #undef BAUD // avoid compiler warning
// #define BAUD 115200
#include <util/setbaud.h> // requires defined BAUD
UBRR0H = UBRRH_VALUE;
UBRR0L = UBRRL_VALUE;
#if USE_2X // defined in setbaud.h
UCSR0A |= (1 << U2X0);
#else
UCSR0A &= ~(1 << U2X0);
#endif
UCSR0C = _BV(UCSZ01) | _BV(UCSZ00); /* 8-bit data */
UCSR0B = _BV(RXEN0) | _BV(TXEN0); /* Enable RX and TX */
}
int uart_putc( char c, FILE *stream )
{
if (c == '\n')
uart_putc('\r',stream);
loop_until_bit_is_set(UCSR0A, UDRE0); /* Wait until data register empty. */
UDR0 = c;
return 0;
}
void uart_puts(const char *s)
{
/* toto je vasa uloha */
}
char uart_getc(void)
{
loop_until_bit_is_set(UCSR0A, RXC0); /* Wait until data exists. */
return UDR0;
}
void delay(int delay) // vlastna funkcia pre dlhsie casy
{
for (int i=1; i<=delay; i++)
_delay_ms(1);
}
1. main.c:
- Inicializuje ADC, hardware a UART. - Nastaví PWM na pin PD6. - V nekonečnej slučke číta hodnotu z ADC, tlačí ju cez UART a nastavuje PWM podľa tejto hodnoty.
2. adc.h a adc.c:
- `adc_init()` nastaví ADC. - `adc_read(char a_pin)` číta hodnotu z daného ADC kanála.
3. uart.h a uart.c:
- `uart_init()` nastaví UART pre komunikáciu. - `uart_putc(char c, FILE *stream)` posiela znak cez UART. - `uart_getc()` prijíma znak cez UART.
Zdrojový kód: zdrojaky.zip
Overenie
Video reprezentácia funkčného zaraidenia.
Video: