Operácie

Číselné sústavy: Rozdiel medzi revíziami

Zo stránky SensorWiki

Balogh (diskusia | príspevky)
Balogh (diskusia | príspevky)
 
Riadok 174: Riadok 174:
*vytvoríme kódy hexadecimálnych číslic:<math>\ 3\ |4\ |7\ </math>
*vytvoríme kódy hexadecimálnych číslic:<math>\ 3\ |4\ |7\ </math>
*zapíšeme výsledok:<math>011\  0100\  0111_2\ = (347)_{16}</math>
*zapíšeme výsledok:<math>011\  0100\  0111_2\ = (347)_{16}</math>
== Prevod desatinnej časti dekadického čísla do sústavy so základom <math>\ z</math> : ==
Metóda je založená na postupnom násobení desatinnej časti dekadického <math>\ N</math> číslom <math>\ z</math>.
<math>D*z\ =\ M\ +\ D</math>
kde:<math>|D|<\ 1,\qquad  |D_1|<\ 1</math> a <math>\ M</math> je celé číslo.
<math>(N)_z\ =\ a_{-1}z^{-1}\ +\ a_{-2}z^{-2}+\ ...\ +\ a_{-k}z^{-k}</math>
<math>(N)_z*z\ =\ a_{-1}\ +\ (N_1)_z \qquad |(N)_z|< 1</math>
kde: <math>\ a_{-1}</math> je celé číslo a <math>(N_1)_z\ <\ 1</math>
<math>(N_1)_z*z\ =\ a_{-2}\ +\ (N_2)_z </math>
kde: <math>\ a_{-2}</math> je celé číslo a <math>(N_2)_z\ <\ 1</math>, atď.
Príklady:
Pr.:1. Preveďme číslo <math>\ 0,12_{10}</math> do osmičkovej sústavy:
[[Obrázok:Prev_db_dec_okt.jpg]]
Pr.:2. Preveďme číslo <math>\ 0,6875_{10}</math> do dvojkovej sústavy:
[[Obrázok:Prev_db_dec_bin.jpg]]
Pr.:3. Preveďme číslo <math>\ 0,1_{10}</math> do dvojkovej sústavy:
[[Obrázok:Prev_db1_dec_bin.jpg]]
Číslo <math>\ 0,1_{10}</math> sa nedá vyjadriť konečným počtom binárnych číslic !!


== Nepozičné číselné sústavy: ==
== Nepozičné číselné sústavy: ==

Aktuálna revízia z 09:59, 19. september 2017

Číselné sústavy

Delíme ich na :

  • polyadické (pozičné) číselné sústavy PČS, ktoré môžeme rozvinúť do mocninového radu
  • nepolyadické (nepozičné)číselné sústavy NČS. Napr.: rímska číselná sústava (IX, X, XIV)

Pozičné číselné sústavy (PČS)

Hodnotu celého nezáporného čísla vyjadríme v tvare polynómu:

,

kde

  • je základ pozičnej sústavy,
  • číslice
    • ak je prirodzené číslo, potom
    • Poloha číslice určuje rád číslice, ktorý je definovaný váhou
  • je rád sústavy.

Ak potrebujeme zapisáť racionálne číslo (väčšina) použijeme záporné mocniny až do rádu

Bežne používame skrátený zápis racionálneho čísla

Poznámka: Rozšírenie na záporné čísla použitím znamienka mínus (-) pred číslom a používanie desatinnej čiarky je vhodné pre ľudí. V žiadnom prípade to nie je vhodný zápis pre počítač.

Pre:

získame dvojkovú - binárnu číselnú sústavu (0, 1)

získame osmičkovú - oktálovú číselnú sústavu (0,1,2,...,7)

získame desiatkovú - dekadickú číselnú sústavu (0,1,2,...,9)

získame šesťnástkovú - hexadecimálnu číselnú sústavu (0,1,2,...,9,A,B,C,D,E,F). Slovo hexadecimálny pochádza z gréckeho (hexi - šesť) a latinského (decem - desať).






Vlastnosti PČS:

  1. Maximálne zobraziteľné číslo:
  • pre celé čísla:
  • pre desatinné čísla:
  1. Minimálne číslo v absolútnej hodnote rôzne od nuly:
  2. Krok diskrétnosti:
  3. Kapacita číselnej sústavy pre m-rádové čísla: Pr.: z = 10, m = 3, K = 1000 možných čísiel (0..999)
  4. Počet zobrazujúcich rádov:.
  5. Desetinná čiarka, bodka si vo všetkých číselných sústavách odpovedá. Samostatne môžeme prevádzať obe časti(celu i zlomkovú).

Napríklad dekadické číslo môžeme rozpísať do tvaru

hodnoty číslic sú .

Zobrazenie informácií v počítači

Počítanie a počítače sú úzko prepojené s číslami a číselnými sústavami. V bežnom živote používame dekadické čísla (číslice 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) v pozičnej číselnej sústave. Napr.:


Moderné počítače vnútorne pracujú s binárnymi číslami=dvojkovými(číslice 0 a 1). Napr.:

,

,

,

,

Pozičné číselné sústavy – prevody

Prevod z desiatkovej sústavy do číselnej sústavy so základom  :

Prevod sa vykonáva zvlášť:

  • pre celočíselnú časť čísla a
  • zvlášť predesatinnú časť čísla

Prevod celočíselného dekadického čísla do sústavy so základom  :

Metóda je založená na postupnom celočíselnom delení dekadického , číslom ,. Celočíselné delenie:

,

Kde: - delenec, - deliteľ , – podiel a - zvyšok, sú celé čísla.

.


Príklad: Prevod do 8-ovej sústavy:


Príklad: Prevod do 16-ovej sústavy:


Príklad: Prevod do binárnej sústay:




Prevod z číselnej sústavy so základom do desiatkovej sústavy  : Vychádza zo vzťahu pre hodnotu čísla vyjadreného v danom základe číselnej sústavy ( zápis hodnoty je formálne zhodný zo zápisom čísla v dekadickej sústave)

alebo

Pr. : Preveďme binárne číslo 1010111 do dekadickej sústavy

Prvý spôsob:

Druhý spôsob:

Pr.: Prevod čísla do dekadickej sústavy:

Prevod z číselnej sústavy so základom do číselnej sústavy so základom  :

Pri prevode zo sústavy so základom do číselnej sústavy so základom sa všeobecne používa schéma

Výnimkou sú prevody medzi sústavami pri základe


Prevod z binárnej sústavy do oktálnej alebo hexadecimálnej sa vykoná tak, že sa binárne znaky rozdelia „odzadu“ na trojíc alebo štvoríc, a skupiny sa kódujú osobitne:


Prevod binárneho čísla do osmičkovej (oktálnej) sústavy:

rozdelíme na trojice binárnych číslic:
vytvoríme kódy oktálnych číslic:
zapíšeme výsledok:


Prevod binárneho čísla do hexadecimálnej sústavy:

  • rozdelíme na štvorice binárnych číslic:
  • vytvoríme kódy hexadecimálnych číslic:
  • zapíšeme výsledok:

Nepozičné číselné sústavy:

V nepozičných číselných sústavách vždy neplatí: .


Rímska číselná sústava (najznámejšia nepolyadická sústava). Skladá sa zo 7 symbolov: I V X L C D M.

I = 1, V = 5, X = 10, L = 50, C = 100, D = 500, M = 1000.

Zápis: Sprava doľava. Výnimka: Ak zapíšeme číslice I, X, C pred väčšiu číslicu, potom menšiu od väčšej odčítame.

Napr: MMXMIV = 1000 + 1000 + (1000 - 10) + (5 - 1) = 2994

Číslice V, L, D môžu byť zapísané len raz a číslice I, X, C najviac trikrát za sebou. M sa môže opakovať ľubovoľne krát.

Príklad: Číslo zobrazené v rímskej číselnej sústave je zapísané ako číslo CCXV, kde jednotlivé znaky odpovedajú hodnotám .