TTLogik príklady: Rozdiel medzi revíziami
Zo stránky SensorWiki
Vytvorená stránka „ ## Odkazy na obvody v simulátore TinkerCAD * Fungujúci odkaz: [https://www.tinkercad.com/things/jRnykRE2V0y-simulacia-projektu-dtv Simulacia projektu na predmet DTV] * Základná doska * AND, NAND * OR, NOR * XOR, NXOR from NAND * XOR, NXOR from NOR * MUX * DMUX * RS flip-flop ## XOR a XNOR V tejto úlohe sa študenti zamerajú na pochopenie a realizáciu logických funkcií XOR a NXOR, ktoré patria medzi základné, ale zároveň veľmi dôležité logick…“ |
dBez shrnutí editace |
||
| (Jedna medziľahlá úprava od rovnakého používateľa nie je zobrazená.) | |||
| Riadok 1: | Riadok 1: | ||
== Odkazy na obvody v simulátore TinkerCAD == | |||
* Fungujúci odkaz: [https://www.tinkercad.com/things/jRnykRE2V0y-simulacia-projektu-dtv Simulacia projektu na predmet DTV] | * Fungujúci odkaz: [https://www.tinkercad.com/things/jRnykRE2V0y-simulacia-projektu-dtv Simulacia projektu na predmet DTV] | ||
| Riadok 13: | Riadok 13: | ||
== XOR a XNOR == | |||
V tejto úlohe sa študenti zamerajú na pochopenie a realizáciu logických funkcií XOR a NXOR, ktoré patria medzi základné, ale zároveň veľmi dôležité logické operácie. Tieto funkcie sa často používajú v obvodoch na porovnávanie, aritmetické operácie či generovanie paritných bitov. Cieľom úlohy je ukázať, že aj tieto zložitejšie logické členy je možné zosta-viť z jednoduchších brán, ako sú NAND a NOR, čo je bežný prístup aj v reálnych digitál-nych systémoch. | V tejto úlohe sa študenti zamerajú na pochopenie a realizáciu logických funkcií XOR a NXOR, ktoré patria medzi základné, ale zároveň veľmi dôležité logické operácie. Tieto funkcie sa často používajú v obvodoch na porovnávanie, aritmetické operácie či generovanie paritných bitov. Cieľom úlohy je ukázať, že aj tieto zložitejšie logické členy je možné zosta-viť z jednoduchších brán, ako sú NAND a NOR, čo je bežný prístup aj v reálnych digitál-nych systémoch. | ||
Študenti sa rozdelia do dvoch skupín. Prvá skupina vytvorí logickú funkciu XOR pomo-cou viacerých NAND členov (napr. z integrovaného obvodu 7400) a následne ju rozšíri o negáciu, čím vznikne funkcia NXOR. Druhá skupina bude postupovať analogicky, avšak využije na realizáciu logických vzťahov NOR členy (napr. z obvodu 7402). Obe skupiny majú za úlohu nielen zostaviť a zapojiť schému, ale aj experimentálne overiť jej funkciu pro-stredníctvom vstupných tlačidiel a výstupných LED diód na doske TTLkit | Študenti sa rozdelia do dvoch skupín. Prvá skupina vytvorí logickú funkciu XOR pomo-cou viacerých NAND členov (napr. z integrovaného obvodu 7400) a následne ju rozšíri o negáciu, čím vznikne funkcia NXOR. Druhá skupina bude postupovať analogicky, avšak využije na realizáciu logických vzťahov NOR členy (napr. z obvodu 7402). Obe skupiny majú za úlohu nielen zostaviť a zapojiť schému, ale aj experimentálne overiť jej funkciu pro-stredníctvom vstupných tlačidiel a výstupných LED diód na doske TTLkit | ||
Po otestovaní všetkých kombinácií vstupov majú študenti vyplniť pravdivostné tabuľky pre obidve funkcie a porovnať výsledky s teoretickými hodnotami. Týmto spôsobom pocho-pia, že funkciu XOR alebo NXOR možno zostaviť rôznymi spôsobmi a že ich implementá-cia z jednoduchých logických členov je dôležitým krokom pri návrhu zložitejších digitálnych systémov. | Po otestovaní všetkých kombinácií vstupov majú študenti vyplniť pravdivostné tabuľky pre obidve funkcie a porovnať výsledky s teoretickými hodnotami. Týmto spôsobom pocho-pia, že funkciu XOR alebo NXOR možno zostaviť rôznymi spôsobmi a že ich implementá-cia z jednoduchých logických členov je dôležitým krokom pri návrhu zložitejších digitálnych systémov. | ||
Úloha zároveň rozvíja schopnosť logického uvažovania a podporuje tvorivé myslenie, keďže študenti musia navrhnúť funkčný obvod vychádzajúci len z dostupných základných komponentov. | Úloha zároveň rozvíja schopnosť logického uvažovania a podporuje tvorivé myslenie, keďže študenti musia navrhnúť funkčný obvod vychádzajúci len z dostupných základných komponentov. | ||
== 3. Analýza logického obvodu == | |||
Zapojte na skúšobnej doštičke obovod podľa nasledovnej schémy zapojenia. Nezabudúť na pripojenie napájania | |||
Vcc (+5V) a GND (0V). | |||
Po zapojení pripojte na vstupy tlačidlá S1, S2 a S4, na výstup LED diódu D1. Vyskúšajte všetky kombinácie | |||
a zapíšte výsledok do tabuľky. Napíšte rovnicu realizovanej logickej funkcie pomocou UDNF alebo UKNF. | |||
<center> | |||
[[Súbor:ZPOC-LAB-Schema02.png|600px]] [[Súbor:ZPOC-LAB-Schema02LBB.png|400px]] | |||
</center> | |||
* Obvod [http://www.ti.com/lit/ds/scls062d/scls062d.pdf SN74HCT00N - datasheet] | |||
<BR> | |||
<BR> | |||
<BR> | |||
<BR> | |||
<BR> | |||
<BR> | |||
Aktuálna revízia z 18:15, 14. november 2025
Odkazy na obvody v simulátore TinkerCAD
- Fungujúci odkaz: Simulacia projektu na predmet DTV
- Základná doska
- AND, NAND
- OR, NOR
- XOR, NXOR from NAND
- XOR, NXOR from NOR
- MUX
- DMUX
- RS flip-flop
XOR a XNOR
V tejto úlohe sa študenti zamerajú na pochopenie a realizáciu logických funkcií XOR a NXOR, ktoré patria medzi základné, ale zároveň veľmi dôležité logické operácie. Tieto funkcie sa často používajú v obvodoch na porovnávanie, aritmetické operácie či generovanie paritných bitov. Cieľom úlohy je ukázať, že aj tieto zložitejšie logické členy je možné zosta-viť z jednoduchších brán, ako sú NAND a NOR, čo je bežný prístup aj v reálnych digitál-nych systémoch. Študenti sa rozdelia do dvoch skupín. Prvá skupina vytvorí logickú funkciu XOR pomo-cou viacerých NAND členov (napr. z integrovaného obvodu 7400) a následne ju rozšíri o negáciu, čím vznikne funkcia NXOR. Druhá skupina bude postupovať analogicky, avšak využije na realizáciu logických vzťahov NOR členy (napr. z obvodu 7402). Obe skupiny majú za úlohu nielen zostaviť a zapojiť schému, ale aj experimentálne overiť jej funkciu pro-stredníctvom vstupných tlačidiel a výstupných LED diód na doske TTLkit Po otestovaní všetkých kombinácií vstupov majú študenti vyplniť pravdivostné tabuľky pre obidve funkcie a porovnať výsledky s teoretickými hodnotami. Týmto spôsobom pocho-pia, že funkciu XOR alebo NXOR možno zostaviť rôznymi spôsobmi a že ich implementá-cia z jednoduchých logických členov je dôležitým krokom pri návrhu zložitejších digitálnych systémov. Úloha zároveň rozvíja schopnosť logického uvažovania a podporuje tvorivé myslenie, keďže študenti musia navrhnúť funkčný obvod vychádzajúci len z dostupných základných komponentov.
3. Analýza logického obvodu
Zapojte na skúšobnej doštičke obovod podľa nasledovnej schémy zapojenia. Nezabudúť na pripojenie napájania Vcc (+5V) a GND (0V).
Po zapojení pripojte na vstupy tlačidlá S1, S2 a S4, na výstup LED diódu D1. Vyskúšajte všetky kombinácie a zapíšte výsledok do tabuľky. Napíšte rovnicu realizovanej logickej funkcie pomocou UDNF alebo UKNF.
- Obvod SN74HCT00N - datasheet