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Motivation

Map creation — more measurements required

Measurements are never accurate

System measurements:
Surfaces change
Sensor design (cone instead of line)
Environment measurements
Wind, humidity and temperature
Material properties




RieSenie

Vytvorime modely:
Senzoru
Prostredia




Pravdepodobnostny model nam umozni zahrnut' aj
neurcitost merania

Povedzme, ziskame udaj 2,23 m v smere 70°:

Ak sme toto namerali, aka je pravdepodobnost, ze v
mieste [21,2 42,1] je nejaka prekazka?

Ak mame pri znalosti neurcitosti senzora nejake
meranie v bode P, Co vieme povedat o Q?
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Ake vlastnosti ocakavame od vytvoreneho
modelu senzora?
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Sonar Model

Simplest model




Ake vlastnosti ocakavame od vytvoreneho
modelu senzora?

Budeme pracovat s mriezkou obsadenosti, tzv.
occupancy grid.

Prekazka = 1, prazdne miesto = 0
Co znamena hodnota 0,5?




Sonar Model

Najjednoduchsi model




Ake vlastnosti ocakavame od vytvoreneho
modelu senzora?

Budeme pracovat s mriezkou obsadenosti, tzv.
occupancy grid.

Prekazka = 1, prazdne miesto = 0
Co znamena hodnota 0,5?




Oblast' medzi objektom a senzorom:

je volna, pravdepodobnost obsadenia policok v tejto
oblasti je

Oblast v okoli zmeranej vzdialenosti:
neistota zmeranej vzdialenost

neistota v uhle
pravdepodobnost obsadenia policok v tejto oblasti je




O oblasti, ktora je skryta ZA prekazkou,
nemame ziadne informacie:

pravdepodobnost obsadenia policok v tejto oblasti je

ak mame informaciu vopred, mézeme ju zmenit,
napr. pokrytie povrchu Marsu skalami je 75%, takze p =




Trivialny model
P
1 A

3 Dist




Sonar Model

vYnd to 0.5

Tend to 0.5




Modeling Common Sonar Sensor

Region |: Probably occupied Region II: Probably empty Region Ill: Unknown




Modeling Common Sonar Sensor

Region |: Probably occupied Region II: Probably empty Region Ill: Unknown




Converting Sonar Reading to Probability: Region |

The nearer the grid element to
+ Region | the origin of the sonar beam,
the higher the belief
The closer to the
acoustic axis, the
R-r f-c higher the belief
A Occupied) = R g x Max

occupied

2
\ We never know with certainty

where ris distance to grid element,
. Is angle to grid element

Max = highest probability possible (e.g., 0.98)

occupied

A Empty) = 1.0 = A(Occupied)




Converting Sonar Reading to Probability: Region II

_ The nearer the grid element to
* Region II: the origin of the sonar beam,
the higher the belief

The closer to the

/ acoustic axis, the
R-i, B-« higher the belief

R p

R Empty) =

A Occupied) = 1.0 — R Empty)

where ris distance to grid element,
o IS angle to grid element




Example: What is value of grid cell [} ?

Which region?
3.5<(6.0-0.5) =» Region I

10—3.5+ 15-0
10 15

2

0.83

P(Occupied) = (1 -0.83)=0.17




Sonar Model

More complex model

P
1A

0 >
2 1 3 Dist
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Sonar Model

How to get create a model like this?

Use parametric functions

Bell curve

Triangle

Trapezoid
Parameters

Angle

Distance
Combine these functions and plot in polar space




Sonar Model

Example using linear interpolation
Use two linear functions of distanc% m and e

Interpolate across these for angle \
'\




Sonar Model

Fun(P:tion m
1 A

0 » Dist

d 3000




Sonar Model

Fun(P:tion e
1 A

/

0 »Dist
d 3000




Sonar Model

Ling,ar Interpolation

(Xn+1IYn+1)




Sonar Model

Recall







Polar

* For each grid square we cé
— Distance from sonar sensor
— Angle to sonar sensor



Polar Space

e Solutions:




Sonar Model

e Demo



The Occupancy Grid

* Current map model is binary:
— A point in space Is either occupied or not
— True whether scattergram or a line based map
« Range readings are binary
* However there are uncertainties:
— Wind
— Humidity
— Obstacle material properties
* Occupancy grids attempt to mitigate some of







The Occupancy Grid

* Grid size Is proportional to computational
complexity:
— How big Is the area you are working in?
* OM X 5m

— Let a grid square cover 5cm X 5cm area
« 100 x 100 squares
« 10000 squares




The Occupancy Grid

* S0 each grid square represents an area of
some size

« Each square Is assigned a probability

* This Is the probability that the square Is
occupied

* 0 = definitely not occupied (white)
» 1 = definitely occupied (black)
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The Occupancy Grid




The Occupancy Grid

Lt how to do we 11indate 1t?

hall
. ' 1
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The Occupancy Grid

* Apply our sonar model based on:
— Current odometry position
— Sonar readings

» Application uses Bayes’ theorem



Bayes' Theorem

Conditional probability:

H is a hypothesis (something we wish to test the truth of), E Is
the available evidence, then:

. P B )

:-: : H | E-.I — = .-'. . =
= - 00 ) L

I.-' |.'_| -_I

P(E | H) is the likelihood of the data, given the hypothesis
pP(H) is the prior probability of the hypothesis.

P(E) is the prior probability of the evidence (used to normalise
the probabilities, 1-p(H))

P(H | E) is the posterior probability of the hypothesis — the
probability that H is true given the evidence E.




Bayes' Theorem

 How does this relate to mapping?
* The hypothesis is that a given grid square is occupied

« The occupancy grid holds the probability that a grid
square is occupied — p(H) — prior probability

* p(E) Is the second prior probability, the probability that
the grid square is empty given by 1.0 — p(H)

* p(E | H) is the likelihood of the data, given the
hypothesis given by the sonar model.

 p(H | E) is the posterior probability of the hypothesis —
the probability that H (there is an obstacle) is true
given the evidence E (new sonar reading).




Bayes' Theorem

« S0 we can now update the occupancy grid
when we get a single reading

* |f we only use this method we overwrite
our hard gained evidence

* \WWe need to use this previous evidence
and update rather than overwrite



Recursive Bayes' Theorem

* Using the recursive form of Bayes’ we get:
ol H|E. ) = piEs [H T iH] B )

| Ly i T TT i ol Ft o I'| & i
I'.-'I_E: |.J-_JI._.I : I'.-'I_H |'_L_:I:-_'l ___' + I'.-'I_E: |_|.J_JI__.I : I'.-'.__I.J_Jll'_.:_'l ___'

e Terms are the same. t and t-1 refers to
current time and previous time




Simple Worked Example

Consider a grid square centred over 250,140
Initial value 1s 0.5

Sonar reading taken
Sonar model gives this square p = 0.67

New value = 0.67




Simple Worked Example

Grid square centres over 250,140
Value is 0.67

Sonar reading taken
Sonar model gives this square p = 0.71

I I
0 e I e o ) e B )
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New value = 0.83




Simple Worked Example

* This calculation needs to be performed for
every square inside the sonar ‘cone’



Implementation Detalls

* Sonar ‘cone’ bounding box
. One quick approach
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Implementation Detalls

* Sonar ‘cone’ bounding box

. One quick approach:

""""""""""""""" (x2,y2)
. (X3,y3)

\(x4,y4)
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Implementation Detalls

* Sonar ‘cone’ bounding box

. OneqUICk approach: X1 = robotX + sonar offset
- N (XZ,YZ) Y1 = roboyY + sonar offset

. (x3,¥3)

\(x4,y4)




Implementation Detalls

* Sonar ‘cone’ bounding box

* One guick approach: 3 - r x cos(sonarTh - B) + x1
: ‘ (x2,y2) Y2 = r X sin(sonarTh — B) + y1
. (x3,y3)
B

\(x4,y4)




Implementation Detalls

* Sonar ‘cone’ bounding box

° Q_Q?__Q_H!Q_‘f approach: X4 = r X cos(sonarTh + B) + x1
- ‘ (x2,y2) Y4 = r X sin(sonarTh + B) + y1
. (x3,y3)
5

\(x4,y4)




Implementation Detalls

* Sonar ‘cone’ bounding box

* One quick approach: r2 = r / cos(B)
‘ (XZ,YZ) X3 = r2 X cos(sonarTh) + x1
. (X3,y3) Y3 =r2Xsin(sonarTh) + y1
P r2\\

\(x4,y4)




Implementation Detalls

* Sonar ‘cone’ bounding box
. One quick approach:

——— e ——
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xI = min(x1,x2,x3,x4)

(X2,V2) (xu;yu) yl = min(y1,y2,y3,y4)

. (x3,y3)

Xu = max(x1,x2,x3,x4)

yu = max(yl,y2,y3,y4)
y(x4,y4)

Which gives our BB




Implementation Detalls

* Sonar ‘cone’ bounding box
* Only iterate over grid squares in the BB

* Only update grid square values when they
fall inside the sonar ‘cone’



Implementation Detalls

* Decision to be made

* We have multiple sensors

« Each with it's own pose

« Each has to be moved to a global pose

* Many options here
— Option 1
— Get sonar reading
— Apply to grid
— Rotate & translate grid




Implementation Detalls

* Decision to be made

* We have multiple sensors

« Each with it's own pose

« Each has to be moved to a global pose

* Many options here
— Option 2
— Get sonar reading
— Rotate & translate
— Apply to global grid




Implementation Detalls

* Decision to be made

* We have multiple sensors

« Each with it's own pose

« Each has to be moved to a global pose

* Many options here
— Option 3
— Get sonar reading
— Apply to single local grid
— Repeat for all sensors




Occupancy Grids

e Demo



Applications

* An occupancy grid holds a probabilistic
model of the environment built up from a
number a sonar readings over time

* We can use this to identify our position

using a process called Monte-Carlo
Localization



Summary

* Robot perceptions are full of inaccuracies

 Application of probability techniques can
mitigate the affect of these on decision
making




