Probabilistic Mapping

Richard Balogh

based on presentation by
Simon Coupland
De Monfort University, Leicester, UK

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE

Fakulta elektrotechniky a informatiky

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

Faculty of Electrical Engineering and Information Technology

Motivation

- Map creation more measurements required
- Measurements are never accurate
 - System measurements:
 - Surfaces change
 - Sensor design (cone instead of line)
 - Environment measurements
 - Wind, humidity and temperature
 - Material properties

Riešenie

- Vytvoríme pravdepodobnostné modely:
 - Senzoru
 - Prostredia

- Pravdepodobnostný model nám umožní zahrnúť aj neurčitosť merania
- Povedzme, získame údaj 2,23 m v smere 70°:
 - Ak sme toto namerali, aká je pravdepodobnosť, že v mieste [21,2 42,1] je nejaká prekážka?
- Ak máme pri znalosti neurčitosti senzora nejaké meranie v bode P, čo vieme povedať o Q?

 Aké vlastnosti očakávame od vytvoreného modelu senzora?

8	3						4	
4			7			œ	4 5	
	5							
9			3				8	2
		8			1			
				6	5		3	
3	4		2		7			
	4 6	7			9			

8	3						4	
4	•		7			œ	4 5	
	5							
	-							
9	-		3				8	2
	•	8			1			
				6	5		3	
3	4		2		7			
	4 6	7			9			

8	3						4	
4	-		7			8	4 5	
	5							
	-							
9	-		3				8	2
	-	8			1			
	8			6	5		3	
3	4 6		2		7			
	6	7			9			

	3						4	
4	-		7			8	5	
	5							
	-							
9	-		3				8	2
	-	8			1			
X	8	X	X	6	5	X	3	X
3	4	X	2		7			
X	6	7			9			

 Aké vlastnosti očakávame od vytvoreného modelu senzora?

- Budeme pracovať s mriežkou obsadenosti, tzv. occupancy grid.
- Prekážka = 1, prázdne miesto = 0
- Čo znamená hodnota 0,5?

 Aké vlastnosti očakávame od vytvoreného modelu senzora?

- Budeme pracovať s mriežkou obsadenosti, tzv. occupancy grid.
- Prekážka = 1, prázdne miesto = 0
- Čo znamená hodnota 0,5?

- Oblasť medzi objektom a senzorom: Region 2
- je voľná, pravdepodobnosť obsadenia políčok v tejto oblasti je 0
- Oblasť v okolí zmeranej vzdialenosti: Region 1
 - neistota zmeranej vzdialenosti
 - neistota v uhle
- pravdepodobnosť obsadenia políčok v tejto oblasti je 1

- O oblasti, ktorá je skrytá ZA prekážkou, nemáme žiadne informácie: Region 3
- pravdepodobnosť obsadenia políčok v tejto oblasti je 0,5
- ak máme informáciu vopred, môžeme ju zmeniť,
 napr. pokrytie povrchu Marsu skalami je 75%, takže p = 0,75

Triviálny model

Vylepšujeme model

Modeling Common Sonar Sensor

Region I: Probably occupied

Region II: Probably empty

Region III: Unknown

Modeling Common Sonar Sensor

Region I: Probably occupied

Region II: Probably empty

Region III: Unknown

Converting Sonar Reading to Probability: Region I

where r is distance to grid element, α is angle to grid element $\text{Max}_{\text{occupied}}$ = highest probability possible (e.g., 0.98)

$$P(Empty) = 1.0 - P(Occupied)$$

Converting Sonar Reading to Probability: Region II

$$P(Occupied) = 1.0 - P(Empty)$$

where r is distance to grid element, α is angle to grid element

Example: What is value of grid cell ?

Which region?

$$3.5 < (6.0 - 0.5) \rightarrow \text{Region II}$$

$$P(Empty) = \frac{\frac{10 - 3.5}{10} + \frac{15 - 0}{15}}{2}$$
$$= 0.83$$

$$P(Occupied) = (1 - 0.83) = 0.17$$

More complex model

Example from Murphy page 379

- How to get create a model like this?
 - Use parametric functions
 - Bell curve
 - Triangle
 - Trapezoid
 - Parameters
 - Angle
 - Distance
 - Combine these functions and plot in polar space

- Example using linear interpolation
 - Use two linear functions of distance m and e

• Function m

1

1

O

Dist

3000

Points - ((0 0) (may(0 d-150) 0 25) (d 1 0)

• Function e

1

0

Dist

Points - 1(0 0 1) (may(0 d-150) 0 5) (d 0 6)

Linear interpolation

Recall

In Cartesian Co-ord Space

Polar Space

- For each grid square we calculate:
 - Distance from sonar sensor
 - Angle to sonar sensor

Polar Space

Solutions:

$$dist = \sqrt{dx^2 + dy^2}$$

$$\theta = arctan2(dy, dx)$$

$$\beta = sonar\theta - \theta$$

Demo

The Occupancy Grid

- Current map model is binary:
 - A point in space is either occupied or not
 - True whether scattergram or a line based map
- Range readings are binary
- However there are uncertainties:
 - Wind
 - Humidity
 - Obstacle material properties
- Occupancy grids attempt to mitigate some of

Divide manning area into a grid

- Grid size is proportional to computational complexity:
 - How big is the area you are working in?
 - 5m X 5m
 - Let a grid square cover 5cm X 5cm area
 - 100 x 100 squares
 - 10000 squares

- So each grid square represents an area of some size
- Each square is assigned a probability
- This is the probability that the square is occupied
- 0 = definitely not occupied (white)
- 1 = definitely occupied (black)

Initial occupancy grid

But how to do we undate it?

- Apply our sonar model based on:
 - Current odometry position
 - Sonar readings
- Application uses Bayes' theorem

Bayes' Theorem

- Conditional probability:
- H is a hypothesis (something we wish to test the truth of), E is the available evidence, then:

$$p(H | E) = \frac{p(E | H) \times p(H)}{p(E)}$$

- p(E | H) is the likelihood of the data, given the hypothesis
- p(H) is the prior probability of the hypothesis.
- p(E) is the prior probability of the evidence (used to normalise the probabilities, 1-p(H))
- p(H | E) is the posterior probability of the hypothesis the probability that H is true given the evidence E.

Bayes' Theorem

- How does this relate to mapping?
- The hypothesis is that a given grid square is occupied
- The occupancy grid holds the probability that a grid square is occupied – p(H) – prior probability
- p(E) is the second prior probability, the probability that the grid square is empty given by 1.0 – p(H)
- p(E | H) is the likelihood of the data, given the hypothesis given by the sonar model.
- p(H | E) is the posterior probability of the hypothesis the probability that H (there is an obstacle) is true given the evidence E (new sonar reading).

Bayes' Theorem

- So we can now update the occupancy grid when we get a single reading
- If we only use this method we overwrite our hard gained evidence
- We need to use this previous evidence and update rather than overwrite

Recursive Bayes' Theorem

Using the recursive form of Bayes' we get:

$$p(H \mid E_t) = \frac{p(E_t \mid H) \times p(H \mid E_{t-1})}{p(E_t \mid H) \times p(H \mid E_{t-1}) + p(E_t \mid \neg H) \times p(\neg H \mid E_{t-1})}$$

 Terms are the same. t and t-1 refers to current time and previous time

Simple Worked Example

- Consider a grid square centred over 250,140
- Initial value is 0.5
- Sonar reading taken
- Sonar model gives this square p = 0.67

$$p(H|E_1) = \frac{0.67 \times 0.5}{0.67 \times 0.5 + 0.33 \times 0.5}$$

New value = 0.67

Simple Worked Example

- Grid square centres over 250,140
- Value is 0.67
- Sonar reading taken
- Sonar model gives this square p = 0.71

$$p(H|E_2) = \frac{0.71 \times 0.67}{0.71 \times 0.67 + 0.29 \times 0.33}$$

New value = 0.83

Simple Worked Example

 This calculation needs to be performed for every square inside the sonar 'cone'

- Sonar 'cone' bounding box
- One quick approach:

- Sonar 'cone' bounding box
- One quick approach:

- Sonar 'cone' bounding box
- One quick approach:

```
(x2,y2)
(x3,y3)
(x4,y4)
```

```
X1 = robotX + sonar offset
Y1 = roboyY + sonar offset
```


- Sonar 'cone' bounding box
- One quick approach:

```
X2 = r X \cos(\text{sonarTh} - \beta) + x1

Y2 = r X \sin(\text{sonarTh} - \beta) + y1
```

```
(x2,y2) γ2
(x3,y3)
β
(x4,y4)
```


Sonar 'cone' bounding box

Sonar 'cone' bounding box

- Sonar 'cone' bounding box
- One quick approach:

```
xl = min(x1,x2,x3,x4)

yl = min(y1,y2,y3,y4)
```

$$xu = max(x1,x2,x3,x4)$$

 $yu = max(y1,y2,y3,y4)$

Which gives our BB

Can now write a for loop to

squares in the grid

- Sonar 'cone' bounding box
- Only iterate over grid squares in the BB
- Only update grid square values when they fall inside the sonar 'cone'

- Decision to be made
- We have multiple sensors
- Each with it's own pose
- Each has to be moved to a global pose
- Many options here
 - Option 1
 - Get sonar reading
 - Apply to grid
 - Rotate & translate grid

Deposit for all concern

- Decision to be made
- We have multiple sensors
- Each with it's own pose
- Each has to be moved to a global pose
- Many options here
 - Option 2
 - Get sonar reading
 - Rotate & translate
 - Apply to global grid

Depost for all concern

- Decision to be made
- We have multiple sensors
- Each with it's own pose
- Each has to be moved to a global pose
- Many options here
 - Option 3
 - Get sonar reading
 - Apply to single local grid
 - Repeat for all sensors

Dotato O translata

```
s T U · Apply to global grid
· F E I ·
· · · ·
```

Occupancy Grids

Demo

Applications

 An occupancy grid holds a probabilistic model of the environment built up from a number a sonar readings over time

 We can use this to identify our position using a process called Monte-Carlo Localization

Summary

- Robot perceptions are full of inaccuracies
- Application of probability techniques can mitigate the affect of these on decision making

