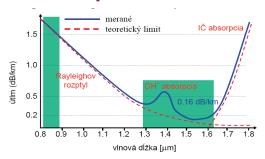

Vláknová optika

fiber optics

- prenos obrazu <u>zväzkom</u> elementárnych svetlovodov
- prenos analógových signálov (náročné)
- prenos digitálnych signálov
- · optovláknové senzory

Elementárny svetlovod

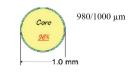


absolútny odraz od rozhrania dvoch prostredí

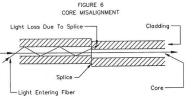
- MM multimódové / mnohovidové
- SM jednovidové / monomódové


Materiál: SiO₂ (sklo), plastové

Vláknová optika – útlm

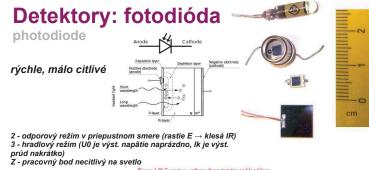

- $\lambda = 1 \mu m$ (min. straty pre 1,2 μm perspektívne 1,5 μm)
- $\alpha = 0.3 dB / km$
- IČ absorpcia, Rayleigho rozptyl, OH absorpcia (optické vlákna sú citlivé na vlhkosť, potreba zabaliť do ochranného obalu)

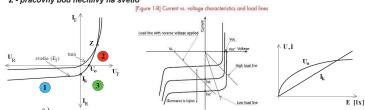
Konštrukcia optovlákien


konštrukcia Single-Mode (SM) vlákna

konštrukcia plastového MM vlákna

Štandardné prierezy komunikačných optických vlákien Konštrukcia optovlákien





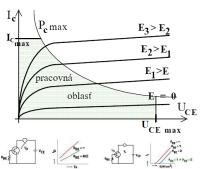
Optické systémy

Zdroje svetla Optická cesta Snímače

Detektory: fototranzistor

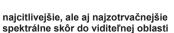
phototransistor

- · citlivejšie, ale i zotrvačnejšie ako fotodiódy.
- · v obvodoch samostatne, alebo s diódami, prípadne Darlington.



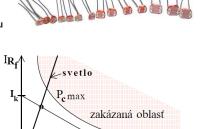
Hodnotu PC_{max} treba dodržať, kritická pri "polootvorenom" tranzistore.

Spektrálne skôr v IR oblasti (800 ÷ 1000 nm).



Detektory: fotoodpor, fotorezistor

photoresistor

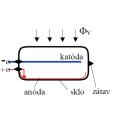

(500 ÷ 600 nm).

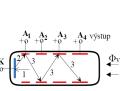
URf a IRf sú napätie a prúd fotoodporu priamka - obvod, v sérii je R s fotoodporom, napájanie sústavy Un, $I_k = U_N/R$

časovo a teplotne závislé. odpor sa mení v rozsahu cca 100 ÷ 10 M (úplná tma)

V - A charakteristika

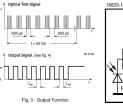
Detektory: integrované

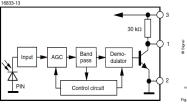


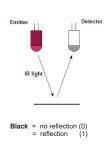

vákuová súčiastka

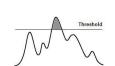
svetlo po dopade na katódu vyrazí niekoľko elektrónov (červené body), tie sú priťahované anódou, elektrónnko tečie prúd

- 1 fotón
- 2 elektrón
- 3 sekundárny elektrón



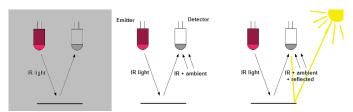






Output

DIGITAL 0 and 1 ANALOGUE 0-100%

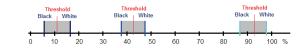


Sources of failures

- Ambient light
- ShadowsSun, lamps
- Sources of IR
- Dust, dirtDistance!

a) red LED b) Infra red LED c) Infra detector d) combination emitter + sensor e) larger version f) miniature SMD version of E+S

Optical line sensor principle



Sensor output

Sensor detector measures not only the reflected IR light, but also the amount of the

· Shields!

· Calibrate!

Sensor calibration

14

14

13

Sensor	Action
010 (line)	go.forward
011 (right)	turn.right
001 (right)	sharp.right
100 (left)	sharp.left
110 (left)	turn.left
111	???
000	???
101	???

Algorithms

More sensors?

Adds more reliability Different width of line

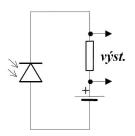
Proportional control

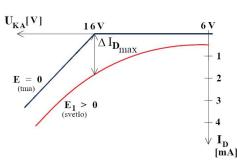
controller output is proportional to the error, which is the difference between the desired and actual positions.

Different shapes enable to determine sharp turns in advance.

Algorithms

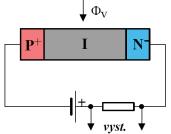
15


15


Špeciálne optické snímače

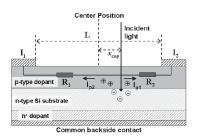
- · Lavínová fotodióda
- · PIN fotodióda
- PSD prvky
- CCD prvky
- CMOS prvky

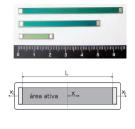
lavínová fotodióda avalanche photodiode



PIN fotodióda

avalanche photodiode

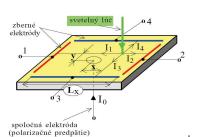


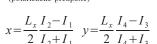


- I intrinzická časť
 - prijíma fotóny, izolácia
- vysoké U \rightarrow rýchlosť $10^{-12} 10^{-15}$ s

PSD prvky

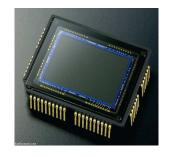
position sensitive device

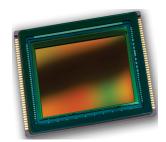

$$x = \frac{L}{2} \frac{I_2 - I_1}{I_2 + I_1}$$


- informácia o POLOHE, nie o intenzite
- celkový prúd (cez spoločnú el.) l₀ = 1μΑ!
- rozlíšenie 12µm, chyba ±0,9%
- obvykle laser, modulovaný lepšie SNR

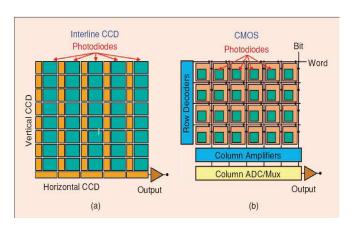
PSD prvky

position sensitive device

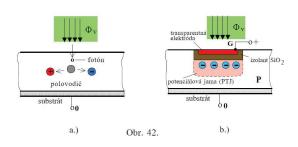



vyhodnotenie 4 prúdov voči zbernej elektróde

x a y sú vzdialenosti od stredu

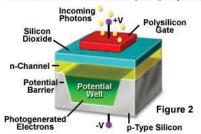

6. Optické snímače

CCD **CMOS** a



6. Optické snímače

6.1. CCD prvky charge coupled device

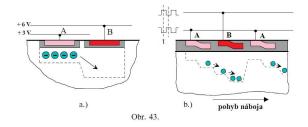


Uchovávame tzv. menšinové náboje, teda v P polovodiči elektróny. Tieto môžu vznikať :

- tepelnou generáciou parazitný jav (šum)
- injekciou svetlom vlastný snímací efekt
- injekciou z blízkeho PN prechodu odovzdanie výstupného signálu

6.1. CCD prvky základná CCD bunka

Metal Oxide Semiconductor (MOS) Capacitor



Charge-Coupled Device

- Invented at Bell Labs in 1970
- 2009 Nobel Prize in Physics
- Widely used in TV, medical, astronomy cameras
- Array of light sensitive MOS capacitors (pixels)
- Incoming light generates electrons which are captured in a potential well
- Electrodes, or gates, move the charge

 $From \ http://learn.hamamatsu.com/articles/quantumefficiency.html\\ Image from \ http://www.microscopyu.com/articles/digitalimaging/ccdintro.html$

6.1. CCD prvky prenos náboja

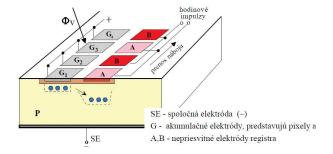


Vyšší potenciál vytvorí hlbšiu PTJ, nosiče do nej prepadávajú. Tvarované elektródy - tvarovaná PTJ Elektródy A a B - výstupný register

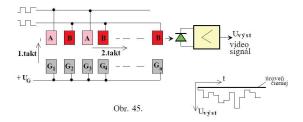
6.1. CCD prvky

Množstvo nosičov závisí od intenzity osvetlenia E a od času t

expozicia (osvit) e: (e býva označené tiež H)



<u>Poznámka:</u> Doba existencie náboja v PTJ je asi 100 ms ÷ 10 s. (vyrovnanie tepelnou generáciou). Dlhé časy - problém, už cca 5 ÷ 10 s vyžadujú <u>chladenie prvkov</u>, napr. polovodičové, resp.softwérové potlačenie. (následné zosnímanie bez obrazu a odčítanie)


6.1. CCD prvky riadkový CCD senzor

Riadkový CCD senzor

- 1. Svetelný tok $\Phi_v \rightarrow$ náboj pod G_1, G_2 , atď.
- 2. Po dobe expozície presun náboja pod A,B
- 3. Fázovo posunuté impulzy na A,B vysúvanie nábojov

6.1. CCD prvky riadkový CCD senzor

Video signál:

- · poloha bodu čas od začiatku prenosu
- osvetlenie bodu amplitúda.

Počet pixelov - 128 (termovízia), po 6 - 10 tis. (profi scannery...) Rozmery : od 6 x 6 μ m do 17 x 8 μ m.

6.1. CCD prvky riadkový CCD senzor

Princíp elektronickej uzávierky

Doba snímania (pre 1728 pixelov) $\,\rightarrow\,$ hodinové impulzy :

10 kHz → doba snímania = 86 ms (1/12 [s])

10 MHz \rightarrow doba snimania = 86 μ s (1/12000 [s])

Optimálne cca 10 ms (1/100 [s]), čomu zodpovedá 86 kHz.

Výhody: netreba mechanickú uzávierku - cena

Nevýhody: pomalé vysúvanie - akumulujú svetlo aj počas vysúvania (náchylnejšie na smearing, blooming) rýchle vysúvanie - nekvalitné (rýchle) odčítanie náboja

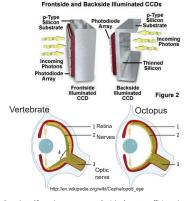
T/2 spôsobí posun o jedno miesto, resp. T vysunie polovicu pixelov (párne - nepárne)

E = 10 lx dáva 0,2 V na výstupe.

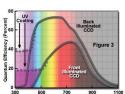
Citlivost' na svetlo: ASA (DIN) a je $100 \div 3200$ ASA ($21 \div 36$ DIN).

<u>Poznámka:</u> Horná hranica je už 6000 - 12000 ASA, diskutabilná je kvalita (malé snímače)

Rozlíšenie úrovní šedej 8 - 32 bitov \rightarrow 256 - 4,295. 10^9 úrovní. (štand. 24 bit)

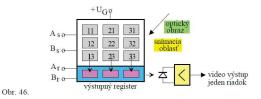

6.1. CCD prvky riadkový CCD senzor

Použitie riadkových CCD:


- · nepohyblivé obrazy (scannery...) snímanie po riadkoch
- · snímanie polohy (ako PSD)
- · iné, napr. zaostrovacie systémy vyhodnotenie kontrastu (krížový senzor, hrany)

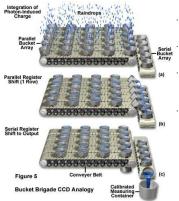
Ako zobrazovacie systémy potrebujú vysokokvalitnú optiku s vysokým rozlíšením pre malé ohniskové vzdialenosti (3 - 8 mm)

6.1. CCD prvkyFront or Back Illuminated

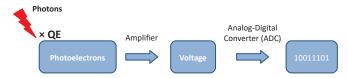

- Traditional, front-illuminated have wiring in front of photosensitive region
- This blocks some light, reducing QE
- Back-illuminated CCDs:
- Back side of the CCD is etched to 10-15 microns
- More fragile and costly, but higher QE

From http://learn.hamamatsu.com/articles/quantumefficiency.html

Image from http://www.microscopyu.com/articles/digitalimaging/ccdintro.html


6.1. CCD prvky maticový CCD senzor: Full frame

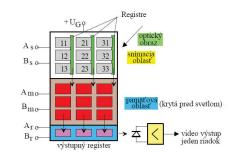
Činnosť:


- obraz sa premietne na snímaciu časť → pod elektródami náboj
- hodinové impulzy na A_s , A_r (1 fáza), a B
 _s , B
 _r (2 fáza) → jeden riadok do výstupného registra.
- hodinové impulzy na $A_{_{\rm f}}$, $B_{_{\rm f}} \to {\rm obsah}$ registra po pixeloch do výstupu.
- častejšie pre väčší formát (24 x 36 mm) pridaný "bočný register"
- pri vysúvaní by nemal reagovať na svetlo zakrytie (mechanic. uzávierka)
- lacnejší

Bucket brigade analogy for read out

- Rain accumulates in buckets
- Rows of buckets shifted
- Readout row shifted bucket-by-bucket to measuring device
- Unless rain stops, last bucket to be read out will have much more water than the first

6.1. CCD prvky vyčítanie obsahu...


Bit Depth	Number of gray levels
8	28 = 256
10	210 = 1024
12	212 = 4096
14	214 = 16384
16	216 = 65536

6.1. CCD prvky maticový CCD senzor: frame transfer

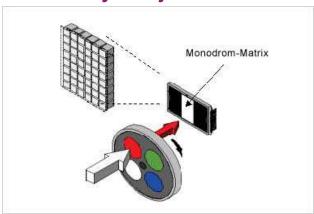
- pridaná pamäť (rovnaká)

Obr. 47.

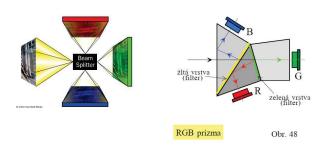
- pridaný zvislý register k stĺpcom v sn. časti (Al elektródy, krytý pred svetlom)
- úbytok plochy (citlivosť) nad pixelom mikrošošovka (HAD)

6.1. CCD prvky snímanie farby

RGB systém tri základné farby:

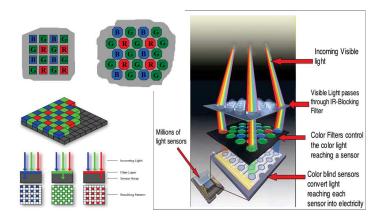

R (Red - červená), G (Green - zelená),B (Blue – modrá)

Poznámka: Jedna sa o aditivne miesanie farieb - svetiel.

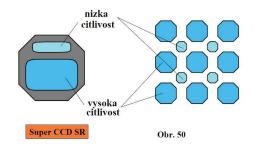

Možnosti:

- postupne tri expozície cez tri filtre
- tri identické obrazy tri senzory
- jeden "trojitý" maticový senzor + tzv. mozaikový filter.
- systém FOVEON

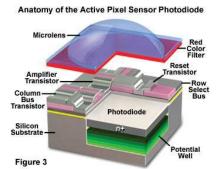
6.1. CCD prvky snímanie farby – trojité snímanie



6.1. CCD prvky snímanie farby – tri CCD prvky


- kvalitné zobrazenie
- náročné na presné nastavenie

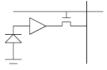
6.1. CCD prvky snímanie farby – mozaikový filter



6.1. CCD prvky snímanie farby – dynamický rozsah

Zväčšenie dynamického rozsahu.

CMOS Detectors

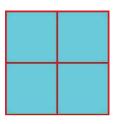


Complementary Metal Oxide Semiconductor

- Transistors in each pixel convert charge to voltage
- More can be done within a pixel meaning frame read out can be faster
- Fabricated much like microprocessors and RAM so are cheaper to make
- Used in webcams, phone cameras since they use **less power**

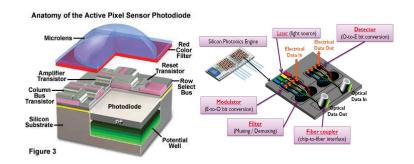
Active Pixel Image Sensor

- 3-4 transistors per pixel.
- · Fast, higher SNR, but
- · Larger pixel, lower fill factor.
- Lower voltage and lower power.



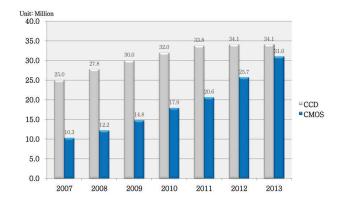
What is a Pixel?

- * The smallest discrete component of an image or picture on a CRT screen is known as a pixel.
- Each pixel is a sample of an original image, where more samples typically provide moreaccurate representations of the original.


What is Fill Factor?

- Fill factor refers to the percentage of a photo site that is sensitive to light.
- If circuits cover 25% of each photo site, the sensor is said to have a fill factor of 75%.
 The higher the fill factor, the more sensitive the sensor.

CMOS Detectors


 $Image\ from\ http://www.olympusmicro.com/primer/digitalimaging/cmosimagesensors.html$

6.1. CCD vs. CMOS

- Create high-quality, lownoise images.
- Greater sensitivity and fidelity
- · 100 times more power
- Require specialized assembly lines
- Older and more developed technology
- More susceptible to noise
- Light sensitivity is lower
- · Consume little power
- · Easy to Manufacture
- Cheaper

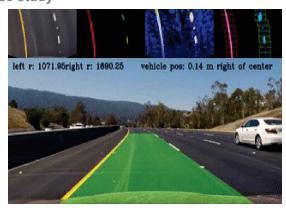
Picture quality, sensitivity and cost vs. Cost and battery life.

6.1. CCD vs. CMOS

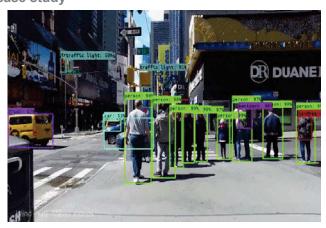
6.1. Kamery v automobiloch case study

Audi A5 Sportback
Driver assistance systems - overview of sensors
Optio

Front camera:

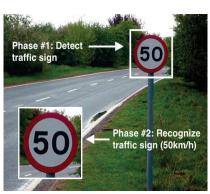

- adaptive cruise controt (ACC)
- solition avoidance assistant
- Step&Go inct. Tortic jamussist - Whatrix LED headilights
- Audi pre-sense front
- Audi pre-sense front
- Audi pre-sense city
- Camera-based traffic
sign recognition

Ultrasonic sensors at front:
- adaptive cruise control (ACC)
- Step&Go with Tables
- Parking system plus
- Parking system plus
- Parking assist


- Turn assist

- Parking system plus
- Par

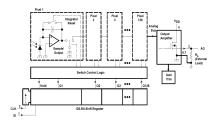
6.1. Kamery v automobiloch case study



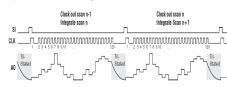
6.1. Kamery v automobiloch case study

6.1. Kamery v automobiloch

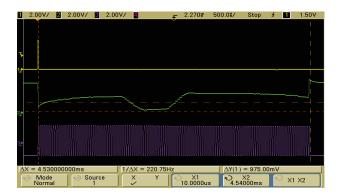
6.1. Kamery v automobiloch case study


Riadkový CCD snímač

TAOS TSL 1401 CL



Riadkový CCD snímač


TAOS TSL 1401 CL

- · 1 x 128 pixels
- · 0 5 V output for each pixel
- · 1 pixel / 1 clock pulse

Riadkový CCD snímač TAOS TSL 1401 CL

