
AVR Timers / counters.

Timer / Counter 0

General information:
Timer0 is a 8 bit timer/counter which can count from 0 to 0xFF. In the timer mode
this peripherie uses an internal clock signal and in the counter mode an external
signal on PORTB.0. I take both modes of operation into consideration. Besides the
timer can be operated either in the polling myode or in the interrupt mode.

Used registers:

Timer registers:
TCCR0 (Timer/Counter 0 Control Register)

TCNT0 (Timer/Counter 0 Value)

Interrupt registers:
TIFR (Timer Interrupt Flag Register)

TIMSK (Timer Interrupt Mask Register)

GIMSK (General Interrupt Mask Register)

Timer mode:
In this mode of operation the timer is provided by an internal signal. After each
clock cycle the value of the TCNT0 register is increased by one. The clock ratel is x
times the oscillator frequency. The factor x can have the following values:

1, 8, 64, 256, 1024

(for example: 1024 - the timer is increased after 1024 cycles of the oscillator
signal)

This prescaling is controlled by writing one of the following values into the register
TCCR0:

initial value used frequency

1 ck

2 ck/8

3 ck/64

4 ck/256

5 ck/1024

1

Polling mode:
In polling mode the timer is operated without using interrupts. Status information
from the timer subsystem is retrieved by reading the appropriate registers in the
foreground program loop.

Example:
/* Testprogramm for Timer/Counter 0 in the Polling Mode

If the Timer has an overflow the overlow bit in the TIFR
register will be set and the led variable increased.
The led variable will be written to the PORTB.
Leitner Harald 07/00

*/

#include <io.h>

uint8_t led;

int main(void)
{

outp(0xFF, DDRB); /* use all pins on PORTB for output */
outp(0, TCNT0); /* start value of T/C0 */
outp(5, TCCR0); /* prescale ck/1024 */
led = 0;

for (;;)
{

// this while-loop checks the overflow bit
// in the TIFR register
while ((inp(TIFR) & 0x01) != 0x01) {}

outp(~led,PORTB);
led++;

if (led == 255)
led=0;

// if a 1 is written to TOV0 bit,
// the TOV0 bit will be cleared
outp((1 << TOV0), TIFR);

}
}

In that way the register TCCR0 is loaded with 5 (ck/1024) and the starting value
of the timer in the register TCNT0 is laid down with 0. After each 1024th cycle of
the oscillator the value of TCNT0 is increased by one.

The for(;;){} defines an endless loop. In this loop a do-while loop is inserted, that
constantly checks, if the bit at the place 0 of the TIFR register is set or not. This
bit has the name TOV0 (timer overflow 0) and is set when the 8 bit register TCNT0
is of the value 0xFF and tries to increase it -> overflow. In this case the do-while
loop is left and the bontent of the variable led is written on PORTB.

Afterwards the variable led is increased by one and checks if led is of the value
0xFF. In this case led is fixed to 0. Otherwise you have to write a one into register
TIFR, which has as a consequence that the TOV0 is deleted and the timer starts
counting from the beginning.

2

Interrupt mode:
This mode of operation is used more often than the polling mode. In this case the
TOV0 bit isn't constantly tested if it is set. In case of a timer overflow condition,
the controller jumps from the actual position to the interrupt vector address in
question. The interrupt routine itself is called from this vector address. After the
interrupt routine is finished, the program returns to the instruction after the one,
where it was interrupted.

Example:

/*
Test program for Timer/Counter 0 in the Interrupt Mode
Every time the Timer starts an interrupt routine the led
variable is written on the PORTB and increased one time.
Leitner Harald 07/00

*/

#include <io.h>
#include <interrupt.h>
#include <sig_avr.h>

uint8_t led;

SIGNAL (SIG_OVERFLOW0)
{

outp(~led, PORTB); /* write value of led on PORTB */
led++;
if (led==255)

led = 0;
outp(0,TCNT0); /* reload timer with initial value */

}

int main(void)
{

outp(0xFF, DDRB); /* use all pins on PORTB for output */
/* enable the T/C0 overflow interrupt */
outp((1 << TOIE0), TIMSK);
outp(0, TCNT0); /* start value of T/C0 */
outp(5, TCCR0); /* prescale ck/1024 */
led = 0;
sei(); /* set global interrupt enable */

for (;;){}
}

The interrupt routine is introduced trough the keyword SIGNAL. As soon as an
overflow occurs, this interrupt routine is carried out. In the main program you
have to set the bits that enable the interrupt. In the register TIMSK you have to
set the bit TOIE0 and through the command sei() the i-bit (global interrupt enable)
is enabled in the status register (SREG).

Counter mode:
In this mode of operation the status changes on the pin T0 are counted. Instead of
operating the signal on T0 manually, using a frequency generator or any

3

automated signal is equally possible. The following program counts the status
changes on pin T0 and increases the value of the counter register TCNT0 by one.

One has to pay attention that the pin T0 is situated on PORTB. Therefore pin 0 of
PORTB has to be defined as an input and all others as an output.

The next step is the definition of the right mode of operation. The value 0x06 has
to be written into the register TCCR0. Now the timer/counter is configured as a
counter of falling edges on pin T0.

Polling mode:
Example:

/*
Test program for Counter 0 in the Polling Mode
If the Counter has an overflow the overlow bit
in the TIFR register
will be set and the led variable increased.
The led variable will be written to the PORTB.
Leitner Harald 07/00

*/

#include <io.h>

uint8_t led;

int main(void)
{

outp(0xFE, DDRB); /* use pin 1-7 of PORTB as output; */
/* - and pin 0 (T0) as input */

outp(0xFE, TCNT0);/* start value of counter */
outp(6, TCCR0); /* init the T/C as counter */

/* - triggered by falling edge on T0 */
led = 2;

for (;;) {
/* this while-loop checks the overflow bit */
while ((inp(TIFR) & 0x01) != 0x01) {}

outp(0xFE, TCNT0); /* start value of counter */
outp(~led,PORTB);
led++;
if (led==255)

led=0;

outp((1 << TOV0),TIFR);
}

}

4

Interrupt mode:
/*

Test program for Counter 0 in the Interrupt Mode
Every time a falling edge is set on the T0 input
the counter is increased for one time.
Leitner Harald 07/00

*/

#include <io.h>
#include <interrupt.h>
#include <sig-avr.h>

uint8_t led;

SIGNAL (SIG_OVERFLOW0)
{

outp(~led, PORTB); /* write value of led on PORTB */
led++;
if (led==255)

led = 2;
outp(0xFE,TCNT0); /* reload counter with initial value */

}

int main(void)
{

outp(0xFE, DDRB); /* use all pins on PORTB for output */
outp((1 << TOIE0), TIMSK); /* enables overflow interrupt*/
outp(0xFE, TCNT0); /* start value of counter */
outp(6, TCCR0); /* count on falling edge on Pin T0 */
led = 0;
sei(); /* set global interrupt enable */

for (;;){}
}

5

Timer / Counter 1

General information
In contrast to timer 0 or timer 2, timer 1 is a 16-bit timer/counter. Because of
this, you can use it for longer counting sequences. The counting extent is between
0x0000 and 0xFFFF. This area is being realised through two registers. Otherwise
Timer 1 features compare/capture and a PWM.

Used registers:

Timer registers:
TCCR1A (Timer/Counter Control Register A)

TCCR1B (Timer/Counter Control Register B)

TCCR1L (Timer/Counter Value Low Byte)

TCCR1H (Timer/Counter Value High Byte)

OCR1AL (Output Compare Register A Low Byte)

OCR1AH (Output Compare Register A High Byte)

OCR1BL (Output Compare Register B Low Byte)

OCR1BH (Output Compare Register B High Byte)

ICR1L (Input Capture Register Low Byte)

ICR1H (Input Capture Register High Byte)

Interrupt registers:
TIFR (Timer Interrupt Flag Register)

TIMSK (Timer Interrupt Mask Register)

GIMSK (General Interrupt Mask Register)

Timer mode:
In this mode of operation the timer is supplied by an internal signal. After each
takt cycle the meter reading is increased by 1. This signal is produced by a n times
the amount of the oscillator signal. The factor x can have the following result:

1,8,64,256,1024

(for instance: 1024- only after 1024 cycles of the oscillators the timer is raised-
the frequency is only fosc/1024) This results can be set with register TCCR1B.

The timer is adjusted through writing the following results into the register initial
value used frequency

1 ck

2 ck/8

3 ck/64

4 ck/256

5 ck/1024

6

Polling mode:
Example:

/*
Test program for Timer/Counter 1 in the Polling Mode
If the Timer has an overflow the overflow bit of the TIFR
register is set and the led variable increased.
The led variable is then written to PORTB.
Leitner Harald 07/00 */

#include <io.h>

uint8_t led;

int main(void)
{

outp(0xFF, DDRB); /* use all pins on PORTB for output */
outp(0x00, TCNT1L); /* start value of T/C1 - low byte */
outp(0x00, TCNT1H); /* start value of T/C1 – highbyte*/
outp(0, TCCR1A); /* T/C1 in timer mode */
outp(1, TCCR1B); /* prescale ck */
led = 0;

for (;;) {
// this while-loop checks the overflow bit in TIFR reg.
while ((inp(TIFR) & 0x04) != 0x04) {}

outp(~led,PORTB);
led++;
if (led==255)

led=0;

outp(0x00, TCNT1L); // start value of T/C1 - low byte
outp(0x00, TCNT1H); // start value of T/C1 - high byte
outp((1<<TOV1),TIFR); // if a 1 is written to a TOV1 bit

// - the TOV1 bit will be cleared
}

}

The TCCR1A register is established with 0 the TCCR1B register with 1 (CK-one
prescale) and the starting value of the registers TCNT1L and TCNT1H with 0.

After each cycle of the quartz oscillator the meter reading of the TCNT1L register is
increased by 1. After reaching the value 0xFF in register TCNT1L, the next clock
cycle will increment TCNT1H by 1 and reset TCNT1L to 0.

There is a while loop that constantly monitors if the bit in position 4 of the TIFR
register is set or not. This bit is called TOV1 (time overflow1) and is set by the
processor at the fist clock cycle after that both 8 bit registers (TCNT1L, TCNT1H)
are of the same value 0xFF. In this case the while loop is left and the content of
the variable led is written on PORTB.

Afterwards the variable led is increased by one and tested if it has the value 255
(0xFF). If this is the case, led is put to 0. If not, a one is written in position 4 of
the register TIFR, which has the consequence that TOV1 bit is deleted and the
timer has to begin to count once again.

7

Interrupt mode:
This mode of operation is used more frequently than polling. The TOV1 bit is not
always controlled if it has been put. Because if there is an overflow the appropriate
vector address is mentioned. The interrupt routine is called up of this vector
address.

After the work of this routine the programm goes at the point where it was
interrupted.

Example:

/*
Test program for Timer/Counter 1 in the Interrupt Mode
Every time the Timer starts an interrupt routine the led
variable
is written on the PORTB and increased one time.
Leitner Harald 07/00

*/

#include <io.h>
#include <interrupt.h>
#include <sig-avr.h>

uint8_t led;

SIGNAL (SIG_OVERFLOW1)
{

outp(~led, PORTB); // write value of led on PORTB
led++;
if (led==255)

led = 0;
outp(0,TCNT1L); // reload timer with initial value
outp(0XFF, TCNT1H);

}

int main(void)
{

outp(0xFF, DDRB); // use port B for output
outp((1 << TOIE1), TIMSK); // enables the T/C1 overflow

// - interrupt in the T/C
// - interrupt mask register

outp(0xFF, TCNT1H); // start value of T/C1
outp(0, TCNT1L);
outp(0, TCCR1A); // no compare/capture/pwm mode
outp(5, TCCR1B); // prescale ck/1024
led = 0;
sei(); // set global interrupt enable

for (;;){}
}

The interrupt routine is introduced through the keyword SIGNAL. As soon as an
overflow occurs the routine is carried out. In the main program necessary
interrupts must be enabled.

In register TIMSK the bit TOIE1 has to be set and through the instruction the I-bit
in the status register is enabled.

8

In all other cases the timer is initialised like in the polling mode.

Counter mode:
In this mode of operation the changes of the statue are counted on the external
pin T1. In case of an overflow an interrupt routine is called up. Instead of the
manual handling of entry T1, a supply through a frequency generator is equally
possible.

The program is in the most parts equal to that of timer0. One should pay attention
that pin T1 is situated at PORTB. Because of that one has to define Pin1 of PORTB
as an entry and all the others as an outlet. The next step is the determination of
the suitable mode of operation. For that the value 0x6 is written into register
TCCR1B. Now the timer/counter is configurated to pin T1 as a counter of falling
edges.

Compare mode:
The Timer/Counter 1 supports two output compare functions using the registers
OCR1A (low and high byte) and OCR1B (low and high byte) as the data sources to
be compared to the content of the Timer/Counter register TCNT1 (low and high
byte). If there is a compare match it is possible to clear the content of the
Timer/Counter register (only if compare with OCR1A) or take effects on the output
pins. This pins are called OC1A (PORTD.5) and OC1B (PORTD.4).

The different functions are controlled by the register TCCR1A as follows:

Bit 0-3: not used

Bit 4: COM1B0

Bit 5: COM1B1

Bit 6: COM1A0

Bit 7: COM1A1

Mode Select:

COM1X1 COM1X0 Description

0 0 T/C 1 disconnected from pin OC1X

0 1 Toggle the value of OC1X

1 0 Clear OC1X

1 1 Set OC1X

The CS10, CS11 and the CS12 bit (bit0-2) of register TCCR1B definesthe
prescalling source of Timer/Counter 1 as follows:

9

CS12 CS11 CS10 Description

0 0 0 T/C 1 stopped

0 0 1 CK

0 1 0 CK/8

0 1 1 CK/64

1 0 0 CK/256

1 0 1 CK/1024

1 1 0 clocked by the pin T1, falling edge

1 1 1 clocked by the pin T1, rising edge

If you want to clear the content of Timer/Counter 1 on a compareA match, it is
necessary to set bit3 in the register TCCR1B. In a compare match the suitable bit
(OCIE1A -> bit4, OCIE1B -> bit3) is set in the TIMSK register or the interrupt
routine (SIG_OUTPUT_COMPARE1A, SIG_OUTPUT_COMPARE1B) is carried out.

Example:

/*
Flashes LED on STK200 Board with Compare - Mode of Timer 1
Pulse width is regulated by switch PD2 and PD3 (Int0 Int1)
07/00 Leitner Harald

*/

#include <io.h>
#include <interrupt.h>
#include <sig-avr.h>

uint8_t delay;

SIGNAL (SIG_OUTPUT_COMPARE1A)/* Compare interrupt routine */
{

if (delay == 0)
outp(0XFF, PORTB);

else
outp(0XFE, PORTB);

}

SIGNAL (SIG_OVERFLOW1)/* T/C1 overflow interrupt routine */
{

if (delay == 0)
outp(0XFF, PORTB);

else
outp(0XFF, PORTB);

outp(0XFF, PORTB);
outp(delay,TCNT1H);
outp(0,TCNT1L);

}

10

SIGNAL (SIG_INTERRUPT0) /* PD2 */
{

if (delay < 15)
delay = 0;

else
delay = delay - 15;

}

SIGNAL (SIG_INTERRUPT1) /* PD3 */
{

if (delay > 235)
delay = 250;

else
delay = delay + 15;

}

int main(void)
{

outp(0xFF, DDRB); /* define PORTB as Output (Leds)*/
outp(0x00, DDRD); /* define PORTD as Input (Switches) */

delay = 120; /* default of timer1 high byte */

/* Switches PB3,PB4 for Interrupt 0 and 1 */
outp((1 << TOIE1) | (1 << OCIE1A), TIMSK);
outp((1 << INT0) | (1 << INT1), GIMSK);
outp((1 << ISC01) | (1 << ISC10) | (1 << ISC11), MCUCR);
outp(delay, TCNT1H); /* Init T1 */
outp(0, TCNT1L);
outp(0XFF, OCR1AH); /* Compare value of T1 */
outp(0X10, OCR1AL);
outp(0, TCCR1A); /* Timer mode with no output */
outp(1, TCCR1B); /* counting with ck */
sei();

for (;;){}
}

This program shows a possible use of the compare function. The timer is initialized
in the main program. To controll the delay of the compare mode there are two
switches PD2 and PD3 on the STK 200 board. A variable delay is decreased by 15
when using PD2 and when using PD3 increased by 15. This value delay is loaded
into the high-byte of the timer/counter register.

Out of this value the timer tries to reach the overflow. Before it can reach an
overflow a compare match occurs and the suitableinterrupt routine is called up.

Because of this routine a led on the board flashes.Afterwards the timer runs to an
overflow and carries out the overflowinterrupt routine. The led is switched off
again and the timer new isinitialised with the value delay.

Capture mode:
This mode of operation enables to memorize the actual value of Timer/Counter 1
through an external signal.

11

When the rising or falling edge of the signal at the input capture pin ICP
(PORTD.6) is detected, the current value of Timer/Counter 1 is transfered to the
16bit input capture register ICR1 (ICR1L, ICR1H). This sets the input capture flag
ICF1 and is possible to call up a interrupt routine (SIG_INPUT_CAPTURE) if the bit
TICIE1 (bit5 of TIMSK) is set. The most important thing is that you have to read
the low byte (ICR1L), for a full 16bit register read, first.

Example:

/*
Flashes LED on STK200 Board with Capture - Mode
of Timer 1. --- With each capture signal on PORTD.6,
the actual value of timer 1 (high byte) is written at PORTB.
07/00 Leitner Harald

*/

#include <io.h>
#include <interrupt.h>
#include <sig_avr.h>

SIGNAL (SIG_OVERFLOW1)
{

outp(0, TCNT1H); /* reset timer after overflow */
outp(0, TCNT1L);

}

SIGNAL (SIG_INPUT_CAPTURE1)
{

outp(~inp(ICR1L), PORTB);
/* reading timer value of capture register */
outp(~inp(ICR1H), PORTB); /* and write to PORTB */

}

int main(void)
{

outp(0xFF, DDRB); /* define PORTB as Output (Leds) and */
outp(0x00, DDRD); /* PORTD as Input (Switches) */
outp(0xFF, PORTB);

/* Enable interrupt for capture and overflow */
outp((1 << TICIE1) | (1 << TOIE1), TIMSK);
outp(0, TCNT1H); /* Init T1 */
outp(0, TCNT1L);
outp(0, TCCR1A); /* Timer mode with no output */
outp(5, TCCR1B); /* counting with ck/1024 */
sei();

for (;;){}
}

This program reads the actual value of Timer/Counter 1 after a signal has occured
on the pin ICP. Then the high-byte of this value is written to the Leds on PORTB.

12

PWM mode:
When the PWM (PulseWidthModulation) mode is selected the Timer/Counter 1 can
be used as an 8,9 or 10bit, free running PWM. Timer/Counter 1 acts as an
up/down counter that is counting up from 0x0000 to the selected top (8bit ->
0x00FF, 9bit -> 0x01FF, 10bit -> 0x03FF), where it turns and counts down to
0x0000 and repeats this cycle endlessly. When the counter value matches the
content of the compare register (OCR1A, OCR1B) it has an effect on the output
pins OCA1 and OCB1 as follows:

COM1X1 COM1X0 Effect on OCX1

0 0 no

0 1 no

1 0 cleared on compare match, up-counting,

set on compare match, down-counting

1 1 cleared on compare match, down-counting,

set on compare match, up-counting

These bits are set in the register TCCR1A:

(COM1A1 -> bit7, COM1A0 -> bit6, COM1B1 -> bit5, COM1B0 -> bit4)

The right PWM mode is selected bits PWM10 (bit0 of TCCR1A) and PWM11 (bit1 of
TCCR1A) as follows:

PWM11 PWM10 Description

0 0 PWM mode disabled

0 1 8bit PWM

1 0 9bit PWM

1 1 10bit PWM

Example:

/*
Testprogramm for Timer/Counter 1 PWM Mode 10bit
The T/C is used as a free running 10bit-PWM.
The T/C is counting from 0x00 up to 0x3FF and after
reaching 0x3FF the T/C is counting down to 0x00.
This cycle repeats endless.
When the counter value matches the content of the output
compare register during counting up, PD5(OC1A) pin
is cleared
and if matches while counting down the PD5(OC1A) is set.
When the counter value matches the content of the output
compare register during counting up, PD4(OC1B) pin is set
and if matches while counting down the PD4(OC1B) is cleared.
Leitner Harald 07/00

*/

#include <io.h>

13

int main(void)
{

outp(0xFF, DDRD); /* use all pins on port D for output */
outp(0xB3, TCCR1A); /* init the counter */
outp(0x5, TCCR1B); /* init the counter */
outp(0x00, TCNT1L); /* value of T/C1L */
outp(0x00, TCNT1H); /* value of T/C1L */
outp(0xFF, OCR1AL); /* value of Compare reg. A Low-Byte */
outp(0x00, OCR1AH); /* value of Compare reg. A High-Byte */
outp(0xFF, OCR1BL); /* value of Compare reg. B Low-Byte */
outp(0x00, OCR1BH); /* value of Compare reg. B High-Byte */

for (;;){}
}

This program creates a free running PWM signal on the two outputs OCA1 and
OCB1. The two compare registers OCR1A and OCR1B define the pulswidth.

Selected Mode:

TCCR1A:
10bit PWM

Com1A1 -> 1, COM1A0 -> 0

Cleared on compare match, up-counting,

set on compare match, down-counting

Com1B1 -> 1, COM1B0 -> 1

Cleared on compare match, down-counting,

set on compare match, up-counting

TCCR1B:
prescale: ck/10

14

Timer 2

General information:
Timer2 is a 8 bit timer that counts from 0 to 0xFF. In the timer mode this
peripherie uses an internal clock signal. Besides the timer can be operated either
in the polling mode or in the interrupt mode.

Used registers:

Timer registers:
TCCR2 (Timer0 Control Register)

TCNT2 (Timer0 Value)

OCR2 (Output Compare Register of Timer2)

ASSR (Asynchronous Status Register)

Interrupt registers:
TIFR (Timer Interrupt Flag Register)

TIMSK (Timer Interrupt Mask Register)

GIMSK (General Interrupt Mask Register)

Timer mode:
In this mode of operation the timer is provided by an internal signal. The value of
the TCNT2 register is increased by one after each clock cycle. This clock signal is
produced out of x times the amount of the oscillator signal. The factor x can have
the following values:

1, 8, 32, 64, 128, 256, 1024

(for example: 1024 - the timer is increased after 1024 cycles of the oscillator
signal)

This prescaling is controlled by writing one of the following values into the register
TCCR2:

initial value used frequency

1 ck

2 ck/8

3 ck/32

4 ck/64

5 ck/128

6 ck/256

7 ck/1024

Timer2 is no Timer/Counter but only a Timer for internal signals.

15

Polling mode:
Example:

/*
Test program for Timer/Counter 2 in the Polling Mode

If the Timer has an overflow the overlow bit in the TIFR
register
is set and the led variable increased.
Then the variable led is written to PORTB.
Leitner Harald 07/00

*/

#include <io.h>

uint8_t led;
uint8_t state;

int main(void)
{

outp(0xFF, DDRB); /* use all pins on PORTB for output */
outp(0, TCNT2); /* start value of T/C2 */
outp(7, TCCR2); /* prescale ck/1024 */
led = 0;
for (;;) {

do { // this while-loop checks the overflow bit in TIFR
state = inp(TIFR) & 0x40;

} while (state != 0x40);

outp(~led,PORTB);
led++;
if (led==255)

led=0;

outp((1 << TOV2), TIFR); // if a 1 is written to TOV2,
// -- the TOV2 will be cleared

}
}

In that way the register TCCR2 is loaded with 7 (ck/1024) and the starting value
of the timer in register TCNT2 is laied down with 0. After each 1024th cycle of the
oscillator the value of TCNT2 is increased by one. The for(;;){} defines an endless
loop. In this loop a do-while loop is inserted, that constantly checks, if the bit on
the place 6 of the TIFR register is set or not. This bit has the name TOV2 (timer
overflow 2) and is set when the 8 bit register TCNT2 is of the value 0xFF and tries
to increase it -> overflow. In this case the do-while loop is left and the bontent of
the variable led is written on PORTB.

Afterwards the variable led is increased by one and checks if led is of the value
0xFF. In this case led is fixed to 0. Otherwise you have to write a one into register
TIFR on position 6 , what has as a consequence that the TOV2 is deleted and the
timer starts counting from the beginning.

Interrupt mode:
This mode of operation is used more often than the polling mode. In this case the
TOV2 bit isn't constantly proved if it was set. Because in case of an overflow the

16

controller jumps from the actual position to the suitable interrupt vector address.
The interrupt is called from this vector address.

After this execussion the program goes on the place, where it was interrupted.

Example:

/*
Test program for Timer/Counter 2 in the Interrupt mode
Every time the Timer starts an interrupt routine the
led variable
is written on the PORTB and increased one time.
Leitner Harald 07/00

*/

#include <io.h>
#include <interrupt.h>
#include <sig_avr.h>

uint8_t led;

SIGNAL (SIG_OVERFLOW2)
{

outp(~led, PORTB); /* write value of led on PORTB */
led++;
if (led==255)

led = 0;
outp(0,TCNT2); /* reload timer with initial value */

}

int main(void)
{

outp(0xFF, DDRB); /* use all pins on PORTB for output */
/* enable the T/C2 overflow interrupt in the T/C interrupt

mask register for */
outp((1 << TOIE2), TIMSK);
outp(0, TCNT2); /* start value of T/C2 */
outp(7, TCCR2); /* prescale ck/1024 */
led = 0;
sei(); /* set global interrupt enable */

for (;;){}
}

The interrupt routine is introduced trough the keyword SIGNAL. As soon as an
overflow occurs, this interrupt routine is carried out. In the main program you
have to fix the bits that enable the interrupt. In the register TIMSK you have to set
the bit TOIE2 and through the command sei() the i-bit (global interrupt enable) is
enabled in the status register (SREG).

Compare mode:
The Timer2 supports one output compare function using the register OCR2 as the
data source to be compared to the content of the Timer2 data register TCNT2. If
there is a compare match it is possible to clear the content of Timer2 data register
TCNT2 or to take effect on the output compare pin OC2 (PORTD.7).

The different functions are controlled by the register TCCR2 in the following way:

17

Bit 0-2 used for prescale (CS20 -> bit0, CS21 -> bit1, CS22 -> bit2)

Bit 3 CTC2 (Clear Timer on Compare Match)

Bit 4 COM20

Bit 5 COM21

Bit 6 PWM2

Bit 7 not used

Mode select:
Com21 Com20 Description

0 0 Timer2 disconnected from pin OC2

0 1 Toggle the value of OC2

1 0 Clear OC2

1 1 Set OC2

Bits 0-2 of register TCCR2 defines the prescaling source of timer2 in the following
way:

CS22 CS21 CS22 Description

0 0 0 Timer2 stopped

0 0 1 ck

0 1 0 ck/8

0 1 1 ck /32

1 0 0 ck /64

1 0 1 ck /128

1 1 0 ck /256

1 1 1 ck /1024

If you want to clear the content of timer2 on a compare match it is necessary to
set the CTC2 bit (bit 3) of the TCCR2 register. On a compare match the bit OCIE2
(bit 7) in the TIMSK register is set or a interrupt routine is called up
(SIG_OUTPUT_COMPARE2).

Example:

/*
Flashes LED on STK200 Board with Compare - Mode of Timer 2
Timer starts with value 0x10, if the counter register
has the same
value as the ocr register the Led will be switched on.
If the timer overflow flag is set the leds will be
switched off.
Leitner Harald 07/00

*/

18

#include <io.h>
#include <interrupt.h>
#include <sig_avr.h>

uint8_t delay;

SIGNAL (SIG_OUTPUT_COMPARE2)
{

outp(0X00, PORTB); /* turn on leds on PORTB */
}

SIGNAL (SIG_OVERFLOW2)
{

outp(0XFF, PORTB); /* turn off leds on PORTB */
outp(delay,TCNT2);

}

int main(void)
{

outp(0xFF, DDRB); /* define PORTB as output (leds) */
delay = 0x10;
/* enables interrupt of timer: */
outp((1 << TOIE2)|(1 << OCIE2), TIMSK);
outp(delay, TCNT2); /* default value of timer */
outp(0x80, OCR2); /* value of compar register */
outp(7, TCCR2); /* selected prescale : ck/1024 */
sei();

for (;;){}
}

This program shows a possibility of using timer2 in the compare-mode. The timer2
is initialized in the main() function of the program. Value delay (0x10) is the
starting value for the register TCNT2 and the value of the compare register OCR2
is set to 0x80.

Timer2 counts from 0x10 to 0x80. At this point the program calls the interrupt
routine for the compare match up and turns on the leds on PORTB. Then Timer2
counts until an overflow has occured. Then the interrupt routine for the overflow is
reached and the leds are turned off. Then the cycle starts counting endlessly from
delay (0x10).

PWM mode:
When the PWM (Pulse Width Modulation) mode is selected, timer2 is used as a 8bit
free running PWM. Timer2 acts as an up/down counter that is counting up from
0x00 to 0xFF, where it turns and counts down to zero and repeats this cycle
endlessly.

To choose this mode you have to set the bit PWM2 (bit 6) of the register TCCR2.
When the counter value matches the content of the compare register (OCR2) there
will be effects on the output pin OC2 (PORTD.7) in the following way:

19

COM2
1

COM2
0

Description

0 0 no effects

0 1 no effects

1 0 cleared on compare match, up-counting, set on compare match,
down-counting

1 1 cleared on compare match, down-counting,set on compare
match, up-counting

(COM21 -> bit5 and COM20 -> bit4 of register TCCR2)

This program creates a free running PWM signal on the output pin OC2. The
compare register OCR2 defines the signals form.

Example:

/*
Test program for Timer/Counter 2 PWM Mode
The T/C is used as a free running PWM.
The T/C is counting from 0x00 up to 0xFF and after
reaching 0xFF the T/C is counting down to 0x00.
Then the cycle repeats.
When the counter value matches the content of the output
compare register during counting up, PD7(OC2) pin is cleared
and if matches while counting down the PD7(OC2) is set.
Leitner Harald 07/00

*/

#include <io.h>
#include <interrupt.h>
#include <sig-avr.h>

int main(void)
{

outp(0xFF, DDRD); /* use all pins on PORTD for output */
outp(0, TCNT2); /* start value of T/C2 */
outp(0x67, TCCR2); /* init the counter */
outp(0x19, OCR2); /* value of OCR2 */

for (;;){}
}

Selected mode:
Prescale: ck/1024

PWM: COM20 -> 1, COM21 -> 1

20

	Timer / Counter 0
	General information:
	Used registers:
	Timer registers:
	Interrupt registers:

	Timer mode:
	Polling mode:
	Interrupt mode:

	Counter mode:
	Polling mode:
	Interrupt mode:

	Timer / Counter 1
	General information
	Used registers:
	Timer registers:
	Interrupt registers:

	Timer mode:
	Polling mode:
	Interrupt mode:
	Counter mode:

	Compare mode:
	Capture mode:
	PWM mode:
	Selected Mode:
	TCCR1A:
	TCCR1B:

	Timer 2
	General information:
	Used registers:
	Timer registers:
	Interrupt registers:

	Timer mode:
	Polling mode:
	Interrupt mode:

	Compare mode:
	Mode select:
	PWM mode:
	Selected mode:

