

TV Sets

Pacemakers
Ovens

 A practical protocol for the Internet of Things
Vehicles
Cows
Smartphones

MQTT – message queuing telemetry transport

● 1999: Andy Stanford-Clark (IBM) and Arlen Nipper (Cirrus Link)

“MQTT is a Client Server publish/subscribe messaging transport protocol.
It is light weight, open, simple, and designed so as to be easy to implement.
These characteristics make it ideal for use in many situations, including
constrained environments such as for communication in Machine to Machine
(M2M) and Internet of Things (IoT) contexts where a small code footprint
is required and/or network bandwidth is at a premium.”

Citation from the official MQTT 3.1.1 specification

Oil Pipeline Monitoring

● MQTT was created for a practical purpose
– (oil pipeline monitoring)

● Continues to be driven by practical needs

● (I plan this to be a picture of a pipeline, to which
I will speak)

Photo credit: Dave Houseknecht, USGSCopyright U.S. Geological Survey. Licensed under https://creativecommons.org/licenses/by/2.0/

Central
Systems

 Monitoring
 - temp,
pressure...

 Control
 - valves…

4000 devices integrated, need to add 8000 more BUT:
Satellite network saturated due to polling of device
VALMET system CPU at 100%
Other applications needed access to data ("SCADA prison")

Proprietary polling protocol

Billing

Maintenance

SCADA

low-bandwidth,
expensive comms

Pipeline monitoring/control challenges

Central
Systems

Billing

Maintenance

SCADA

low-bandwidth,
expensive comms

Scalability for whole pipeline
Network traffic much lower - events pushed to/from devices and report by exception
Network cost reduced
Lower CPU utilization
Broken out of the SCADA prison – data accessible to other applications

MQTT Broker

pub sub

transformation

Enterprise MessagingMQTT

20 Field
Devices to 1
Concentrator

Enterprise to physical world solution with MQTT

Modbus

Requirements:

● Simple implementation
● Quality of Service data delivery
● Lightweight and bandwidth efficient
● Data agnostic
● Continuous session awareness

MQTT – message queuing telemetry transport

x

Hermanudin, Aldwin & Ekadiyanto, Fransiskus & Sari, Riri. (2019). Performance Evaluation of CoAP
Broker and Access Gateway Implementation on Wireless Sensor Network.
10.1109/TENCONSpring.2018.8692050.

MQTT – topic

FEI STU

BlokA

posch1

BlokC

posch7

posch6

teplota

vlhkost

tlak

teplota

vlhkost

tlak

teplota

BlokB

Subscribe

FEISTU / BlokA / posch7 / teplota
FEISTU / BlokA / posch7 / #
FEISTU / BlokA / + / teplota
FEISTU / #

Publish

► If the broker fails…

► Does not define a standard client API, so application developers

 have to select the best fit.

► Does not include many features that are common in Enterprise

 Messaging Systems like:

 o expiration, timestamp, priority, custom message headers, …

► Does not have a point-to-point (aka queues) messaging pattern

 o Point to Point or One to One means that there can be more than one

 consumer listening on a queue but only one of them will be get the message

► Maximum message size 256MB

62

MQTT – disadvantages

import mqtt.*;

MQTTClient client;

void setup() {

 client = new MQTTClient(this);

 client.connect("mqtt://try:try@broker.shiftr.io", "userName");

}

void draw() { /* draw nothing */}

void keyPressed() {

 client.publish("/FEISTU", "myMessage");

}

MQTT – príklad v Processingu

void clientConnected() {

 println("client connected");

 client.subscribe("/hello");

}

void messageReceived(String topic, byte[] payload) {

 println("new message: " + topic + " - " + new String(payload));

}

void connectionLost() {

 println("connection lost");

}

MQTT – príklad v Processingu

Developed by Douglas Crockford

Standard ISO/IEC 21778:2017

The simplest supported data formats are:

 {"key1":"value1", "key2":"value2"}

{"stringKey":"value1", "booleanKey":true, "doubleKey":42.0, "longKey":73}

JSON – JavaScript Object Notation

Douglas Crockford

XML vs. JSON

<person>

 <name>John Smith</name>

 <age>25</age>

 <address>

 <street>21 2nd Street</street>

 <city>New York</city>

 <state>NY</state>

 <postalCode>10021</postalCode>

 </address>

 <sex>

 <type>male</type>

 </sex>

</person>

{

 "name": "John Smith",

 "age": 25,

 "address": {

 "street": "21 2nd Street",

 "city": "New York",

 "state": "NY",

 "postal code": "10021"

 },

 "sex": {"type": "male"}

}

JSONObject message;

void setup()

{ message = new JSONObject();

 message.setFloat("temperature", 10.0);

 message.setInt("state",2);

 message.setString("name", "Lion");

 saveJSONObject(message, "data/new.json");

 int aktualnyStav = message.getInt("state");

 float aktualnaTeplota = message.getFloat("temperature");

 String realName = message.getString("name");

 println("Stav: " + aktualnyStav

 + ", Teplota: " + aktualnaTeplota + ", Meno: " + realName);

}

JSON – príklad v Processingu

void draw() { /* nic nekreslime */ }

void keyPressed() {

 temperature = random(-10, 32.5);

 message.setFloat("temperature", temperature);

 println(message.toString());

}

JSON – príklad v Processingu - pokračovanie

Vyskúšajte si posielanie protokolom MQTT. Pošlite jednoduchú správu

 MQTT server mqtt://try:try@broker.shiftr.io

 topic /feistu/misa/2020/XXX

a potom na

 MQTT server mqtt://9RYd7rPhakMm9CCwPBJG@demo.thingsboard.io

 topic v1/devices/me/telemetry

Správa vo formáte JSON má vyzerať takto:

 {"XXX-Lat": 49.1634, "XXX-Lon": 20.1349, "XXX-Temp": 18.2}

kde

 XXX sú prvé tri písmená vášho priezviska

 Lat je zemepisná šírka na štyri desatinné miesta

 Lon je zemepisná dĺžka na štyri desatinné miesta

 Temp aktuálna vonkajšia teplota

Úloha – zadanie

TV Sets

Pacemakers
Ovens

 A practical protocol for the Internet of Things
Vehicles
Cows
Smartphones

MQTT – message queuing telemetry transport

● 1999: Andy Stanford-Clark (IBM) and Arlen Nipper (Cirrus Link)

“MQTT is a Client Server publish/subscribe messaging transport protocol.
It is light weight, open, simple, and designed so as to be easy to implement.
These characteristics make it ideal for use in many situations, including
constrained environments such as for communication in Machine to Machine
(M2M) and Internet of Things (IoT) contexts where a small code footprint
is required and/or network bandwidth is at a premium.”

Citation from the official MQTT 3.1.1 specification

Oil Pipeline Monitoring

● MQTT was created for a practical purpose
– (oil pipeline monitoring)

● Continues to be driven by practical needs

● (I plan this to be a picture of a pipeline, to which
I will speak)

Photo credit: Dave Houseknecht, USGSCopyright U.S. Geological Survey. Licensed under https://creativecommons.org/licenses/by/2.0/

Central
Systems

 Monitoring
 - temp,
pressure...

 Control
 - valves…

4000 devices integrated, need to add 8000 more BUT:
Satellite network saturated due to polling of device
VALMET system CPU at 100%
Other applications needed access to data ("SCADA prison")

Proprietary polling protocol

Billing

Maintenance

SCADA

low-bandwidth,

expensive comms

Pipeline monitoring/control challenges

Before going into the details of the technology
this and the next chart set the scene by
describing a solution where the extended
reach feature of MQ helped a customer solve
a problem that was preventing their business
from growing. Describing the types of
problems that it is designed to help with.

The problem:
A pipeline running thousands of kilometres
through inhospitable regions. The existing
solution monitored and controlled 4000
devices along the pipeline BUT the system
needed to scale to a total of 12,000 devices.
This type of system is referred to as a SCADA
system or supervisory control and data
acquisition.

The incumbent system could not scale for a
couple of reasons
1)the network was saturated

2)The monitoring and control application running on the central system was running at a
100% CPU.

The central system communicated with
devices on the pipeline to both discover state
such as temp and flow rate and to send
control messages to control the pipeline for
instance to open and close valves. The
central system polled each device in turn
starting with the first and then moving on to
the next after reaching the end it returned to
the first. Polling is inherently inefficient and
wastes a lot of bandwidth especially if the
state has not changed. This was compounded
by the fact a the comms occurred over a
satellite network which is low bandwidth and
costly to utilise – network is changed by data
volume.

In addition to the problem scaling the system
there was another requirement for additional
applications such as billing and maintenance
systems to gain access to some of the data.
The existing system did not provide this and
became known as the SCADA prison.

IBM and a partner Arcom were asked to
provide a solution….

Central
Systems

Billing

Maintenance

SCADA

low-bandwidth,

expensive comms

Scalability for whole pipeline
Network traffic much lower - events pushed to/from devices and report by exception
Network cost reduced
Lower CPU utilization
Broken out of the SCADA prison – data accessible to other applications

MQTT Broker

pub sub

transformation

Enterprise MessagingMQTT

20 Field
Devices to 1
Concentrator

Enterprise to physical world solution with MQTT

Modbus

The problems were solved by changing the
system to use an asynchronous messaging
approach.

WebSphere MQ servers were located at the
data centre, these acted as a hub sitting
between the devices on the pipeline and the
backend processing applications.

The traditional enterprise MQ client and
protocol were not appropriate as the footprint
of the client was to big to run on the
processing units on the pipeline and more
importantly the protocol was far too heavy for
the network that was charged by the volume
of data sent.

Instead the MQ Telemetry Transport or MQTT
for short was chosen to provide the comms
between the pipeline and the MQ server. The
use of MQTT together with MQ solved the
customers problems because:
1)MQTT is a bidirectional/duplex messaging protocol enabling messages and events to
be pushed from the client to the server and the server to the client. Pushing messages
is inherently more efficient than polling. Rather than the server continuously polling the
device to find out when a state has changed now a state change event is generated and
pushed to the server only when the state change occurs. This change alone
dramatically reduced the network usage enabling the 8000 additional evices to be
added to the system.

2)The MQTT protocol has a tiny footprint on the wire, this combined with only sending
data when needed meant that network costs were reduced (for the equivalent no of
devices)

3)MQTT is a publish subscribe protocol. When a message is published (sent) to the
MQ server multiple applications can access the message by subscribing to it. The
Valmet monitoring and control application subscribed for all messages as before but
now the billing and maintenance applications could also subscribe to messages
pertinent to them enabling the scada prison to be broken. For instance the billing
system could subscribe for “ticket” messages.

New concentrator or edge gateway boxes
were introduced. These boxes acted as a
consolidation point for 20 devices. The MQTT
connection is established from the
concentrator box (not from each device).
The concentrator box talks to the device using
their native protocol (e.g. modbus) For
reference the concentrator boxes are Arcom
Directors, provided by an IBM partner Arcom
(now Eurotech)

Its worth noting that in many solutions where
MQTT and MQ are used, Message Broker is
also used. In this solution Message Broker is
used to transform the message format from a
highly compact format into a format that is
consumable by the backend applications.

This solution has been replicated across a
number of customers.

Requirements:

● Simple implementation
● Quality of Service data delivery
● Lightweight and bandwidth efficient
● Data agnostic
● Continuous session awareness

MQTT – message queuing telemetry transport

x

Hermanudin, Aldwin & Ekadiyanto, Fransiskus & Sari, Riri. (2019). Performance Evaluation of CoAP
Broker and Access Gateway Implementation on Wireless Sensor Network.
10.1109/TENCONSpring.2018.8692050.

MQTT – topic

FEI STU

BlokA

posch1

BlokC

posch7

posch6

teplota

vlhkost

tlak

teplota

vlhkost

tlak

teplota

BlokB

Subscribe

FEISTU / BlokA / posch7 / teplota
FEISTU / BlokA / posch7 / #
FEISTU / BlokA / + / teplota
FEISTU / #

Publish

► If the broker fails…

► Does not define a standard client API, so application developers

 have to select the best fit.

► Does not include many features that are common in Enterprise

 Messaging Systems like:

 o expiration, timestamp, priority, custom message headers, …

► Does not have a point-to-point (aka queues) messaging pattern

 o Point to Point or One to One means that there can be more than one

 consumer listening on a queue but only one of them will be get the message

► Maximum message size 256MB

62

MQTT – disadvantages

import mqtt.*;

MQTTClient client;

void setup() {

 client = new MQTTClient(this);

 client.connect("mqtt://try:try@broker.shiftr.io", "userName");

}

void draw() { /* draw nothing */}

void keyPressed() {

 client.publish("/FEISTU", "myMessage");

}

MQTT – príklad v Processingu

void clientConnected() {

 println("client connected");

 client.subscribe("/hello");

}

void messageReceived(String topic, byte[] payload) {

 println("new message: " + topic + " - " + new String(payload));

}

void connectionLost() {

 println("connection lost");

}

MQTT – príklad v Processingu

Developed by Douglas Crockford

Standard ISO/IEC 21778:2017

The simplest supported data formats are:

 {"key1":"value1", "key2":"value2"}

{"stringKey":"value1", "booleanKey":true, "doubleKey":42.0, "longKey":73}

JSON – JavaScript Object Notation

Douglas Crockford

XML vs. JSON

<person>

 <name>John Smith</name>

 <age>25</age>

 <address>

 <street>21 2nd Street</street>

 <city>New York</city>

 <state>NY</state>

 <postalCode>10021</postalCode>

 </address>

 <sex>

 <type>male</type>

 </sex>

</person>

{

 "name": "John Smith",

 "age": 25,

 "address": {

 "street": "21 2nd Street",

 "city": "New York",

 "state": "NY",

 "postal code": "10021"

 },

 "sex": {"type": "male"}

}

JSONObject message;

void setup()

{ message = new JSONObject();

 message.setFloat("temperature", 10.0);

 message.setInt("state",2);

 message.setString("name", "Lion");

 saveJSONObject(message, "data/new.json");

 int aktualnyStav = message.getInt("state");

 float aktualnaTeplota = message.getFloat("temperature");

 String realName = message.getString("name");

 println("Stav: " + aktualnyStav

 + ", Teplota: " + aktualnaTeplota + ", Meno: " + realName);

}

JSON – príklad v Processingu

void draw() { /* nic nekreslime */ }

void keyPressed() {

 temperature = random(-10, 32.5);

 message.setFloat("temperature", temperature);

 println(message.toString());

}

JSON – príklad v Processingu - pokračovanie

Vyskúšajte si posielanie protokolom MQTT. Pošlite jednoduchú správu

 MQTT server mqtt://try:try@broker.shiftr.io

 topic /feistu/misa/2020/XXX

a potom na

 MQTT server mqtt://9RYd7rPhakMm9CCwPBJG@demo.thingsboard.io

 topic v1/devices/me/telemetry

Správa vo formáte JSON má vyzerať takto:

 {"XXX-Lat": 49.1634, "XXX-Lon": 20.1349, "XXX-Temp": 18.2}

kde

 XXX sú prvé tri písmená vášho priezviska

 Lat je zemepisná šírka na štyri desatinné miesta

 Lon je zemepisná dĺžka na štyri desatinné miesta

 Temp aktuálna vonkajšia teplota

Úloha – zadanie

