3D printing II.

Harmonogram

- 6. 3D printing I.
- 7. Prieskum + 3D printing II.
- 8. 3D scan
- 9. CNC
- 10. Generatívny dizajn
- 11. Arduino
- 12. Prezentácie -> skúškové obd.

Warping

Warping - zmršťovanie

Warping

Cracking

Cracking / Delamination

https://youtu.be/HVdvKfIHtS0

Skirt suknička

- First layer only

 steady flow can be established
- watch for homogenity

Skirt suknička

Pros:

- · Primes the extruder
- · Detects issues while printing
- Uses less material than rafts or brims
- Simple check before the actual printing starts, which can save time, effort and money
- Helps in defining the print area

Cons

- No value addition to the print
- Makes use of additional material apart from the print, which is waste material

Brim - šilt

Brim - šilt

Pros:

Prevents warping issues with materials like ABS

- Improves bed adhesion leading to higher chances of a successful print
- Comparatively easy to remove when compared to a raft
- Doesn't interfere with the bottom layer of the print
- Uses less material compared to a raft

Cons:

- Produces a small amount of waste material
- Touch points must be sanded to get a smooth surface finish
- Possibility of breaking the part while removing the brim

https://all3dp.com/2/3d-printing-brim-when-should-you-use-it/

Raft

Raft

Pros:

- Fewer warping issues with stubborn materials like ABS
- Improved bed adhesion leading to higher chances of a successful print
- Consistent print output
- Stronger first layer

Cons:

- Rough finish on the bottom layer of the model
- Difficult to seperate from model, especially with a denser raft
- · Extra waste material
- Possibility of breaking the part while removing the raft, especially with tiny model components

Support and orientation

https://all3dp.com/1/3d-printing-support-structures/

Support and orientation

https://all3dp.com/1/3d-printing-support-structures/

Support and orientation

https://all3dp.com/1/3d-printing-support-structures/

Support and orientation

https://all3dp.com/1/3d-printing-support-structures/

Not all overhangs need supports:

- 1. the 45 degrees rule
- 2. the 5 mm rule for bridges

https://www.3dhubs.com/knowledge-base/how-design-parts-fdm-3d-printing#overhangs

Support - nevýhody

Práca navyše

Riziko poškodenia

Dissolvable 3D printing support structures

https://all3dp.com/1/3d-printing-support-structures/

Build direction

Due to the anisotropic nature of FDM printing, understanding the application of a component and how it is built are critical to the success of a design. FDM components are inherently weaker in one direction due to layer orientation.

Build direction

Walls - shells

Walls - shells

Infill - výplň

Walls + infill

Infill %	30%	30%	30%	30%
# of perimeters	2	4	2	0
# of top solid layers	2	0	0	0
	2	0	0	0

https://my3dmatter.com/shells-matter-more-than-meets-the-eye/

Infill

Infill - výplň - ANCHOR

A. Poor anchoring for screwing, B. Increased infill allows for better anchoring, C. Increased outer shell is a cheaper solution and offers improved anchoring over the option on the left

Infill - výplň - GEOMETRY

https://my3dmatter.com/influence-infill-layer-height-pattern/

https://my3dmatter.com/influence-infill-layer-height-pattern/

https://all3dp.com/1/common-3d-printing-problems-trouble shooting-3d-printer-issues/

PLA vs ABS: Print-Relevant Information

Temperature	PLA	ABS
Print bed temperature	20-60°C (optional)	80-110°C (mandatory)
Glass transition temperature	57°C	104°C
Melting temperature	150-160°C	N/A*
Printing temperature	180-230°C	210-250°C

PLA vs ABS: Print-Relevant Information

warping

PLA vs ABS: Product-Relevant Information

Temperature	PLA	ABS	
Printing Temperature	180-230°C	210-250°C	
Print Bed Temperature	20-60°C	80-110°C	
Print Bed heating	Optional	Mandatory	
Printer Enclosure	Optional	Recommended	
Clogs/Jams Nozzle	Occasionally	Never	
First Layer Adhesion	Minor problems	Minor problems	
Fumes	Little to none	Bad and intense	
Absorbs Moisture	Yes	Yes	

PLA vs ABS: Print-Relevant Information

Material	PLA	ABS	
Strength	Decent Strength	Above Average Strength	
Flexibility	Brittle	Moderately Flexible	
Impact Resistant	No	Yes	
Heat Resistant	No	Yes	
UV/H2O Exposure	Degrades Over Time	Degrades Over Time	
Biodegradable	Yes	No	
Recyclable	Yes	Yes	
Cutting, Filing, Sanding	Possible	Possible	
Painting, Gluing	Kinda Possible	Possible	
Acetone Treatment	Not Possible	Possible	
Colours	Wide Range Available	Wide Range Available	
Exotic Varieties	Some Available Some Available		

Standard Types of 3D Printer Filament

3D Printer Filament	Easy to Use	Physical Properties			
		Strength	Flexibility	Durability	
PLA	YES				
ABS					
PETG (PET, PETT)					
Nylon					
TPE, TPU, TPC (Flexible)					
PC					

Temperature Sensitive ABS

Photochromatic PLA Changes color when exposed to UV-light, like sunlight.

PLA + Brass

PLA + Bronze

Zhrnutie

PLA (Polylactic Acid) biodegradable thermoplast, it's easy to print.

ABS (Acrylonitrile butadiene styrene)
oil-based thermoplastic
slightly higher strength, flexibility, and durability
slightly more complicated print process + fumes