

- 1. Nálepky
- 2. Projekty DVT 2019
 - a) Raná starostlivosť
 - b) Škoda auto
- 3. LASER
- 4. Qcad introduction

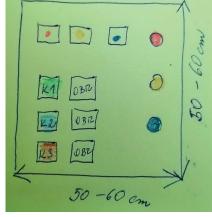
Nálepky

Prejdite sa po škole a nájdite miesto, ktoré by si zaslúžilo nejaký informačný piktogram. Obrázok vložte do rámika 10x10 cm, šírka 5mm a zaoblenie rohov 1cm.

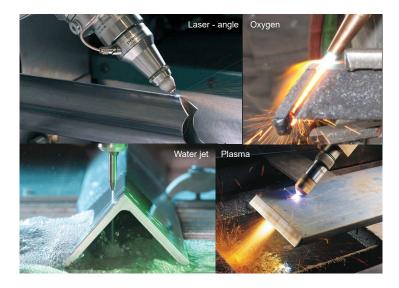
FEI STU Bratislava, Blok D, prízemie, r. 2018

Projekty

- vlastné
- FIT2 something (FA + FEI)

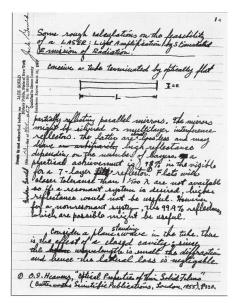


· Raná starostlivosť

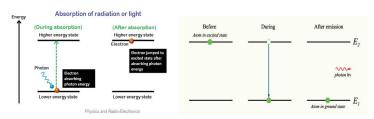


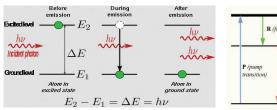
Laser

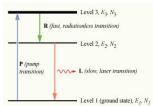
The Greek mathematician and scientist **Archimedes** is credited with inventing the first directed-energy (DE) weapon during the siege of **Syracuse** in **214-212 B.C.** Writing four centuries later, the Roman author Lucian recorded Archimedes's use of mirrors to focus sunlight on to invaders' ships and set them on fire, although modern experimenters have failed to reproduce the weapon. H.G. Wells reintroduced the idea to the popular imagination in 1897 in The War of the Worlds, where the Martian invaders' heat ray can destroy an armored warship. Even today, the chances of doing that are a million to one.



The **personnel halting and stimulation response rifle** (PHASR) is a prototype non-lethal laser dazzler developed by the Air Force Research Laboratory's. Its purpose is to temporarily disorient and blind a target.


Gordon Gould


(17. 6 . 1920 – 16.9. 2005)

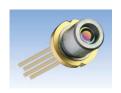


Laser: absorpcia, spontánna a stimulovaná emisia

Zdroje svetla: KOHERENTNÍ ZÁŘENÍ LASER $\mathbf{P}_{\max_{\mathrm{KOH.Z.}}}$ polovodičový laser VÝKON ZÁŘENÍ NEKOHERNTNÍ ZÁŘENÍ LED převládá spontánní emise P_{max NEKOH.Z} Stimulated Emission in a Mirrored Laser Cavit Java Simulácia Figure 6

Zdroje svetla:

LASER


Podľa aktívnej látky

- Pevnolátkové
 - Rubín
 - Safír Nd:YAG laser
 - Polovodič (GaAs, AlGalnP, GaN)
- Plynové
 - N. CO.

 - He, Ne, Xenón
 Excimerové (ArF, KrCl, KrF)
- Kvapalinové (farbivové)
- organické farbivá
- anorganickými farbivá

Režim činnosti

- Pulzné (pulsed mode)
- Spojité (continuous)

Zdroje svetla: LASER

Power	USE
1 – 5 mW	Laser pointers
5 mW	CD-ROM drive
100 mW	High-speed CD-RW burner
250 mW	Consumer 16× DVD-R burner
400 mW	DVD 24× dual-layer recording
1 W	Green laser in Holographic Versatile Disc prototype
1 - 20 W	Majority of commercially available solid-state lasers used for micro machining
130 – 100 W	Typical sealed CO2 surgical lasers
100 – 3000 W	Typical sealed CO2 lasers used in industrial laser cutting
10 – 100 kW	Weapons

Examples of pulsed systems with high peak power:

700 TW (700×1012 W) - National Ignition Facility, a 192-beam, 1.8-megajoule laser system

adjoining a 10-meter-diameter target chamber[88]
1.3 PW (1.3×1015 W) — world's most powerful laser as of 1998, located at the Lawrence Livermore Laboratory[89]

Zdroje svetla: LASER

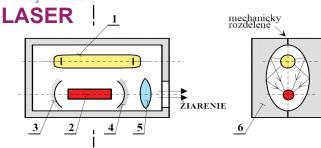
Záleží nielen na výkone, ale aj dobe expozície a vlnovej dĺžke

kategória I $(P_{max} < 0.4 \mu W)$

relatívne neškodné aj pri priamom pohľade CD prehrávače a čítačky čiarového kódu

kategória II (P_{max} < 1 mW)

nemali by spôsobiť poškodenia oka (zatvorí sa za 0,25 s) laserové ukazovátka


kategória III ($P_{max}(cont) < 5 \text{ mW}, P_{max}(imp) < 0.5\text{W}$) difúzny odraz žiarenia nespôsobuje poškodenie zdravia. DVD-R napalovačky

DANGER LASER RADIATION DID DIRECT EYE EXPOSU DIODE LASER 5 mW MAX OUTPUT at 670 nm CLASS IIIa LASER PRODUCT

kategória IV

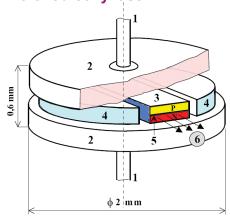
zneprístupnený klietkou – aj difúzny odraz spôsobuje vážne poranenia vrátane popálenín chirurgický laser (30-100 W), vyrezávacie (100-3000 W) ~50 W ťažké popáleniny, od 200 W prerežú človeka napoly, od 10 kW vyššie ostanú z človeka len dymiace topánky)

Zdroje svetla:

- 1 výbojka (zdroj svetelnej energie)
- 2 aktívna (svetlo emitujúca) látka 3 odrazné, nepriepustné zrkadlo Optický rezonátor (2-3-4)
- 4 polopriepustné zrkadlo 5 šošovka (kolimačná) 6 delené eliptické zrkadlo

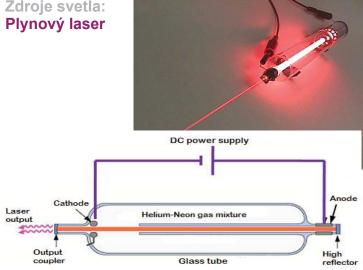
Nevýkonové využitie laserov:

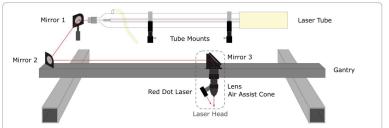
prenos informácií (optovlákna)

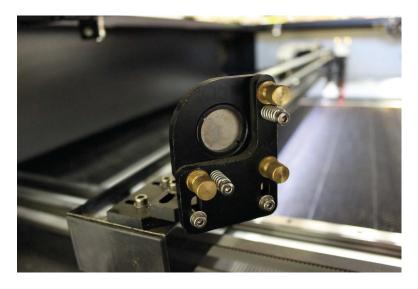

holografia

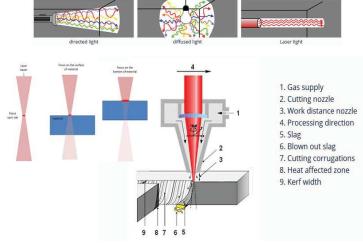
meranie vzdialeností (geometrické, interferenčné)

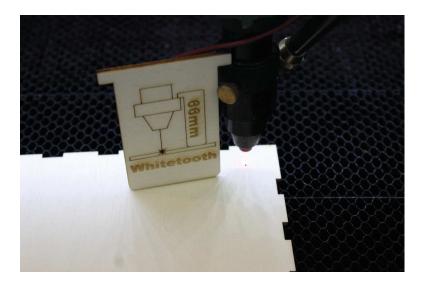
Poznámka: Koherentnosť charakterizuje tzv. "koherenčná dĺžka". Na tejto vzdialenosti (rádovo 1 m), je s určitou presnosťou fáza zaručená.

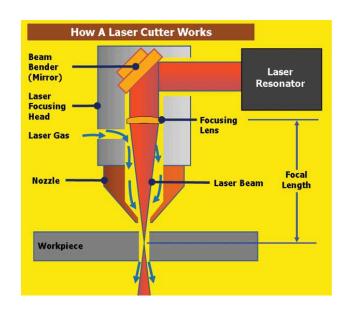

Zdroje svetla:

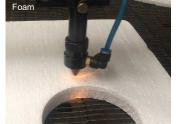

Polovodičový laser

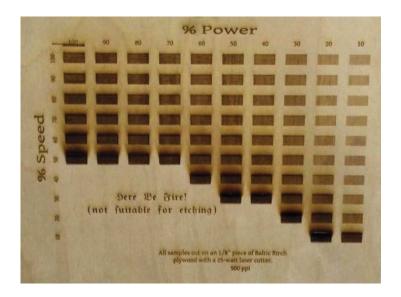

- P↑ $P_{\underline{m}\underline{a}\underline{x}}$ stimulovaná oblasť P_{min} spontánna Ip
- $I_p = 80 150 \text{ mA}$
- $\eta > 40\%$
- Impulzy 1ps
- div 5 x 25° / kolimačná šošovka


Zdroje svetla: Plynový laser








Cutting depth

$$h \propto \frac{P}{vd}$$

kde

h – hĺbka vniku,P – výkon lasera

v – rýchlosť rezud – priemer laserového lúča

GCC X252 80W - výkon 80W, posun 100 cm/s (teoreticky maximálny)

p.č.	Material	Hrúbka [mm]	Rezanie:	Rýchlosť [%]	Výkon [%]	PPI	Gravírovanie:	Rýchlosť [%]	Výkon [%]	PPI
1	Akryl sheet - priesvitne	1	Ok	1,6	50	-	Ok	90	85	-
2	Akryl sheet - red	3	Ok	1	50	-	Ok	90	85	
3	Akryl sheet - red	4	Ok	1	55	-	Ok	90	85	-
4	Akryl sheet - black	5	Ok	1	60	-	Ok	90	80	-
5	Balza - modelárska	1.65	Ok	3.1	25	-	OK	20	25	-
6	Banán	Banana for scale					Ok	50	70	400
7	Čokoláda	No	Nie	-	-	-	Ok	40	60	
8	Kapadoska	1	Ok	3	70		ok	90	55	
9	Kartón	2	Ok	4,5,10	30,35,70	-				
10	Koža	1,5	OK	2	40	400	Ok	65	90	600
12	MDF	3	Ok	1 / 1,5	35 / 65	-	Ok	25 / 80	30 / 80	-
13										
14	HDF	3	OK	1	55		Ok	90	60	
15	Papier 300g	-	Ok			-	Ok	30	4	
16	Papier 1mm	1	Ok	6	50	-	Ok	50	65	400
17	Pauzovací papier	3 ks 100g	OK	8	67	-				
18	Preglejka Topol	4	Ok	1	25	-	Ok	90	75	-
19	Preglejka *	8,3	Ok	1	70	-	Ok	90	40	-
20	Kapadoska - plastová	neznáma	Ok	5	80	-	-	-	-	-
21	Sklo	nerozhodujúce	Nie	-	-	-	OK	25	25	-
22	Syntetická koža	-	OK	6	70	-	Ok	20	60	400

Nevhodné materiály: PVC a plasty na báze PVC Komatex Plasty na báze polykarbonátu ABS Teflón HPS

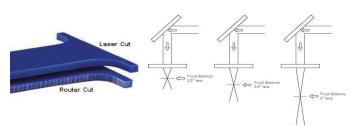
Poznámky: Rezanie projektu pri S : 1% trvá 24 minút Rezanie toho istého pri S : 10% trvá 6 minút

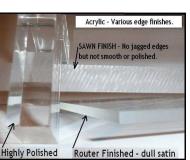
EPILOG LASERCUTTER SETTINGS

Each of our Epilog Lasercutters at Pier 9 require custom settings for a successful cut or etch operation.
 As the lasertubes degrade over time, the ideal settings for a material change.
 Use the tabs below to find recommended settings for your laser!

Note:
This is a User-Run Google Doc. If you find a new setting that works well on one of the machines, please update the machine's tab and add the date when you

Material	Engrave	Cut
Wood	×	х
Acrylic	×	х
Fabric	×	х
Cloth	х	х
Deramic	x	
Delrin	x	×
inoleum	х	×
eather	×	×
Marble	×	
Matte Board	×	×
Coated Metals	x	
Paper	X	
Cork	X	х
île	X	X
Slass	X	
Chacalata	×	Y


Material	Danger	Consequence
PVC (Polyvinyl Chloride)	Emits Pure Chlorine Gas	Gas will ruin lense, corrode Metal, and ruin motion control system.
Pleather / Artificial Leather	Emits Pure Chlorine Gas	Gas will ruin lense, corrode Metal, and ruin motion control system.
Moleskin Notebooks	Emits Pure Chlorine Gas	Gas will ruin lense, corrode Metal, and ruin motion control system.
Polycarbonate / Lexan	Cuts poorty, Discolors, Fire	This Material absorbs infared Radiation so the laser is very ineffective.
ABS	Emits cyanide gas and melts	ABS tends to melt, making a mess. It als has a higher chance of catching fire.
HDPE / Milk Bottle Plastic	Catches fire and melts	It melts, tending to make a mess and ruin the material tray.
Polystyrene Foam	Catches Fire	It catches Fire and melts. #1 material to cause laser fire.
Fiberglass		Like Polystyrene, it metis, catches fire and the meted drops continue to burn and turn into rock-hard drips and pebbles
Coated Carbon Fiber	Emits Noxious Fumes	A mix of two materials. Thin carbon fiber can be cut, with some fraying - but not when coated.
Any Powder		Compressed Air will blow it away.
Butane Lighters	Explode / Catch Fire	
Gasoline or other Liquids	Explode / Catch Fire	
People	XX	
Animals	xx	

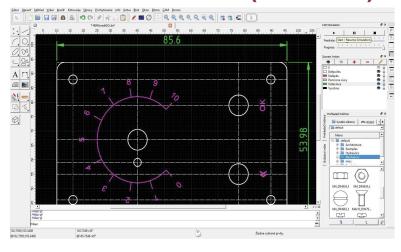

Text or Etch/Engrave: BLUE (RGB 0,0,255)



pocket sized robots by Junichi Tsuneoka.

Laser origami

Prívesok



Qcad (LibreCAD)

Rekapitulácia

• P1: úvod

- C1: FabLab: prehliadka a zoznámenie s priestormi

• P2: bitmapy/vektory, rezanie (notebook)

- C2: tvorivé cvičenie vo FabLabe s Radkou

• P3: laser

- C3: rezanie nálepky (notebook)

• P4: úvod do 3D tlače (notebook)

C4: vyrobíme si prívesok

• myslite na projekt dňom i nocou